《221一元二次方程的概念(2)课件人教新课标版.ppt》由会员分享,可在线阅读,更多相关《221一元二次方程的概念(2)课件人教新课标版.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.一元二次方程的概念一元二次方程的概念 只含有只含有 个未知数,并且未知数的最高次数是个未知数,并且未知数的最高次数是 的的 方方程叫做一元二次方程。程叫做一元二次方程。2、一元二次方程的一般形式、一元二次方程的一般形式 一般地一般地一般地一般地,任何一个关于任何一个关于任何一个关于任何一个关于x x x x 的一元二次方程都可以的一元二次方程都可以的一元二次方程都可以的一元二次方程都可以化为化为化为化为 的形式的形式的形式的形式,我们把我们把我们把我们把(a,b,c(a,b,c(a,b,c(a,b,c为常数,为常数,为常数,为常数,a0a0a0a0)称为)称为)称为)称为一元二次方程的一般
2、形式一元二次方程的一般形式一元二次方程的一般形式一元二次方程的一般形式。复习巩固复习巩固一一2整式整式 上一节我们认识了一元二次方程,接下来我们就要初步探求一元二次方程的解.方程解的定义是怎样的呢?能使方程左右两边相等的能使方程左右两边相等的未知数的值就叫方程的解。未知数的值就叫方程的解。目目 标标活动活动1 1:悬而未解的问题悬而未解的问题解解:设邀请了设邀请了x x队参加比赛队参加比赛,根据题意得根据题意得:即即:x:x2 2-x=56-x=56x12345678910 X2-x 02612 203042 5672 90 由表中数值可以发现,x=8是方程x2-x=56的解的解.是否只有x=
3、8是方程的根呢?X=-7呢?问题问题 要组织一次排球邀请赛要组织一次排球邀请赛,参赛的每两队之间都要比参赛的每两队之间都要比赛一场赛一场,根据场地和时间等条件根据场地和时间等条件,赛程计划安排赛程计划安排7 7天天,每天安每天安排排4 4场比赛场比赛,比赛组织者应邀请多少个队参加比赛比赛组织者应邀请多少个队参加比赛?一元二次方程的解也叫一元二次方程的解也叫做一元二次方程的做一元二次方程的根根。X X1 1=8 X=8 X2 2=-7=-7(舍去)舍去)要符合问题的实际意义。要符合问题的实际意义。1)2)3)X X1 1=3 X=3 X2 2=-3=-3X X1 1=2 X=2 X2 2=-4=
4、-4活动活动2:利用:利用平方数的性质探求下列方程的根:平方数的性质探求下列方程的根:解:解:书书P29.8活动活动3:1、如果、如果2是是x2-c=0的一个根,那么常数的一个根,那么常数c=_,这个方程的其它根是,这个方程的其它根是_。4-2A.1 B.-1 C.1A.1 B.-1 C.1或或-1 D.0-1 D.0B B2、已知关于、已知关于x的一元二次方程(的一元二次方程(a-1)x2+x+a2-1=0是是x=0,则则a的值为(的值为()3、已知已知m是方程是方程x2+x2009=0的一个根,的一个根,求求m2+m的值为的值为 。2009活动活动4:1、关于、关于x的的一元二次方程一元二
5、次方程(m+2)2x2+3m2x+m2-4=0有一根为有一根为0,则,则2m2-4m+3的值为多少?的值为多少?2、关于、关于x的的方程方程(m+2)2x2+3m2x+m2-4=0有有一根为一根为0,则,则2m2-4m+3的值为多少?的值为多少?2、方程方程(x21)(2x+5)=0的解为的解为_。1、方程方程(x1)(x+3)(x 2)=0的解为的解为_.x1=1,x2=-3,x3=2x1=1,x2=-1,x3=2.5活动活动5:3、已知已知6和和7是某一个方程的两个根,则该方程是某一个方程的两个根,则该方程可以是可以是()A.(x7)(x+6)=0 B.(x+7)(x+6)=0C.(x7)
6、(x-6)=0 D.(x+7)(x-6)=0DX=-1X=-1X=X=1 1活动活动6:X=X=2 2例题讲解若方程x2a+b-2xa-b+3=0是关于x的一元二次方程,则a、b的值各是多少?1、2、3、1.一元二次方程的概念一元二次方程的概念 只含有一个未知数,并且未知数的最高次数是只含有一个未知数,并且未知数的最高次数是2的整式的整式方程叫做一元二次方程。方程叫做一元二次方程。2、一元二次方程的一般形式、一元二次方程的一般形式 一般地一般地一般地一般地,任何一个关于任何一个关于任何一个关于任何一个关于x x x x 的一元二次方程都可以的一元二次方程都可以的一元二次方程都可以的一元二次方程都可以化为化为化为化为 的形式的形式的形式的形式,我们把我们把我们把我们把(a,b,c(a,b,c(a,b,c(a,b,c为常数,为常数,为常数,为常数,a0a0a0a0)称为)称为)称为)称为一元二次方程的一般形式一元二次方程的一般形式一元二次方程的一般形式一元二次方程的一般形式。3、一元二次方程根的概念、一元二次方程根的概念作业:作业:1、书书P29,42、练习册、练习册若方程若方程x2a+b-2xa-b+3=0是关于是关于x的一元二次方程,则的一元二次方程,则a、b的的值各是多少?值各是多少?