人教版九年级上册数学第24章-圆-两课时复习课ppt课件.ppt

上传人:飞****2 文档编号:70256951 上传时间:2023-01-17 格式:PPT 页数:49 大小:2.85MB
返回 下载 相关 举报
人教版九年级上册数学第24章-圆-两课时复习课ppt课件.ppt_第1页
第1页 / 共49页
人教版九年级上册数学第24章-圆-两课时复习课ppt课件.ppt_第2页
第2页 / 共49页
点击查看更多>>
资源描述

《人教版九年级上册数学第24章-圆-两课时复习课ppt课件.ppt》由会员分享,可在线阅读,更多相关《人教版九年级上册数学第24章-圆-两课时复习课ppt课件.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第第2424章章 圆圆知识体系复习知识体系复习最新人教版数学精品课件设计本章知识结构图圆的基本性质圆的基本性质圆圆圆的对称性圆的对称性弧、弦圆心角之间的关系弧、弦圆心角之间的关系同弧上的圆周角与圆心角的关系同弧上的圆周角与圆心角的关系与圆有关的位置关系与圆有关的位置关系正多边形和圆正多边形和圆有关圆的计算有关圆的计算点和圆的位置关系点和圆的位置关系切线切线直线和圆的位置关系直线和圆的位置关系三角形的外接圆三角形的外接圆三角形内切圆三角形内切圆等分圆等分圆圆和圆的位置关系圆和圆的位置关系弧长弧长扇形的面积扇形的面积圆锥的侧面积和全面积圆锥的侧面积和全面积最新人教版数学精品课件设计第第1部分部分

2、圆的基本性质圆的基本性质第第2部分部分 与圆有关的位置关系与圆有关的位置关系本本章章重重点点内内容容第第3部分部分 正多边形和圆正多边形和圆第第4部分部分 弧长和面积的计算弧长和面积的计算第第5部分部分 有关作图有关作图最新人教版数学精品课件设计一一.圆的基本概念圆的基本概念:1.圆的定义圆的定义:到到的距离等于的距离等于的点的的点的集合叫做圆集合叫做圆.2.有关概念有关概念:(1)弦、直径弦、直径(圆中最长的弦圆中最长的弦)(2)弧、优弧、劣弧、等弧弧、优弧、劣弧、等弧(能完全重合的弧,只能(能完全重合的弧,只能在同圆或等圆中出现)在同圆或等圆中出现)(3)弦心距弦心距O定点定点定长定长最新

3、人教版数学精品课件设计二二.圆的基本性质圆的基本性质1.圆的对称性圆的对称性:(1)圆是圆是图形图形,都是它的对称轴都是它的对称轴.圆有圆有条对称轴条对称轴.(2)圆是圆是图形图形,并且绕圆心旋转并且绕圆心旋转都能与自身重合。都能与自身重合。经过圆心的每一条直线经过圆心的每一条直线无数无数中心对称中心对称任何角度任何角度轴对称轴对称最新人教版数学精品课件设计2.垂径定理垂径定理:垂直于弦的直径平分这条弦垂直于弦的直径平分这条弦,并并且平分弦所对的两条弧且平分弦所对的两条弧.ADBPCCD是圆是圆O的直径的直径,CD AB AP=BP,ACBC=ADBD=最新人教版数学精品课件设计垂径定理的推论

4、:垂径定理的推论:判断:平分弦的直径垂直于弦(判断:平分弦的直径垂直于弦()ADBPC平分弦(非直径)的直径垂直于弦平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧并且平分弦所对的两条弧.最新人教版数学精品课件设计1、如图、如图,已知已知 O的半径的半径OA长为长为5,弦弦AB的长的长8,OCAB于于C,则则OC的长为的长为 _.OABC3AC=BC弦心距弦心距半径半径半弦长半弦长垂径定理垂径定理的应用的应用方法:在方法:在 O中,若中,若 O的半径的半径r、圆心距圆心距d、弦长弦长a中,中,任意知道两个量,可根据任意知道两个量,可根据定理构造直角三角形求出第三个量。定理构造直角三角形求

5、出第三个量。垂径垂径最新人教版数学精品课件设计2:如图,圆:如图,圆O的弦的弦AB8 ,直径直径CEAB于于D,DC2,求半径求半径OC的长。的长。垂径定理的垂径定理的应用应用方法:方法:在应用垂径定理进行计算时(多数在求在应用垂径定理进行计算时(多数在求半径时)经常需要列方程。半径时)经常需要列方程。最新人教版数学精品课件设计3、如图,P为O的弦BA延长线上一点,PAAB2,PO5,求O的半径。最新人教版数学精品课件设计 关于弦的问题,常常关于弦的问题,常常需要过圆心作弦的垂线段,需要过圆心作弦的垂线段,这是一条非常重要的辅助这是一条非常重要的辅助线。线。把圆心到弦的垂线段、把圆心到弦的垂线

6、段、半径、一半弦长构成直角半径、一半弦长构成直角三角形,便将问题转化为三角形,便将问题转化为直角三角形的问题。直角三角形的问题。MAPBOA方法、技方法、技巧巧3.同圆或等圆中圆心角、弧、弦之间的关系同圆或等圆中圆心角、弧、弦之间的关系:(1)在同圆或等圆中在同圆或等圆中,如果圆心角相等如果圆心角相等,那么它所那么它所对的弧相等对的弧相等,所对的弦相等所对的弦相等.(2)在圆中在圆中,如果弧相等如果弧相等,那么它所对的圆心角相那么它所对的圆心角相等等,所对的弦相等所对的弦相等.(3)在同圆或等圆中在同圆或等圆中,如果弦相等如果弦相等,那么它所对的那么它所对的劣弧与优弧分别相等劣弧与优弧分别相等

7、,所对的圆心角相等所对的圆心角相等.ABDCO COD=AOBABCD=AB=CD最新人教版数学精品课件设计4.圆周角圆周角:定义定义:顶点在圆周上,两边和圆相顶点在圆周上,两边和圆相交的角,叫做圆周角交的角,叫做圆周角.性质性质(1):在同一个圆中:在同一个圆中,同弧所对同弧所对的圆周角等于它所对的圆心角的的圆周角等于它所对的圆心角的.BAC=BOC12一半一半最新人教版数学精品课件设计 在同圆或等圆中在同圆或等圆中,同弧或等弧所对的所有同弧或等弧所对的所有的圆周角相等的圆周角相等.相等的圆周角所对的弧相等相等的圆周角所对的弧相等.圆周角的性质圆周角的性质(2)ADB与与AEB、ACB是同弧

8、所对的圆周角是同弧所对的圆周角ADB=AEB=ACB最新人教版数学精品课件设计性质性质3:半圆或直径所对的圆周角都相等半圆或直径所对的圆周角都相等,都等于都等于。性质性质4:900的圆周角所对的弦是圆的的圆周角所对的弦是圆的.AB是是 O的直径的直径 ACB=900圆周角的性质圆周角的性质:900(900(直角直角)直径直径.最新人教版数学精品课件设计ABCOD3.6 作圆的直径找作圆的直径找900900的圆周角的圆周角也是圆里常用的辅助线也是圆里常用的辅助线技巧:技巧:最新人教版数学精品课件设计例例2.在在 O中,弦中,弦AB所对的圆心角所对的圆心角AOB=100,则,则弦弦AB所对的圆周角

9、为所对的圆周角为_.500或或1300切记:切记:一条弦所对的圆心角只有一个,但所对的一条弦所对的圆心角只有一个,但所对的圆周角却有两类,是互补的。圆周角却有两类,是互补的。最新人教版数学精品课件设计(2)点在圆上点在圆上(3)点在圆外点在圆外(1)点在圆内点在圆内1.点和圆的位置关系点和圆的位置关系ACB如果规定点与圆心的距离为如果规定点与圆心的距离为d,圆的半径圆的半径为为r,则则d与与r的大小关系为的大小关系为:点与圆的位置关系 d与r的关系 点在圆内点在圆内点在圆上点在圆上点在圆外点在圆外drdrdr三三.与圆有关的位置关系与圆有关的位置关系:最新人教版数学精品课件设计2.直线和圆的位

10、置关系直线和圆的位置关系:OOOl ll ll l(1)相离相离:(2)相切相切:(3)相交相交:一条直线与一个圆没有公共点一条直线与一个圆没有公共点,叫做叫做直线与这个圆相离直线与这个圆相离.一条直线与一个圆只有一个公共点一条直线与一个圆只有一个公共点,叫叫做直线与这个圆相切做直线与这个圆相切.一条直线与一个圆有两个公共点一条直线与一个圆有两个公共点,叫叫做直线与这个圆相交做直线与这个圆相交.最新人教版数学精品课件设计OOl l(1)当直线与圆相离时当直线与圆相离时(2)当直线与圆相切时当直线与圆相切时;(3)当直线与圆相交时当直线与圆相交时.直线与圆位置关系的识别直线与圆位置关系的识别:d

11、rl ldrOl ldr设圆的半径为设圆的半径为r,圆心到直线的距离为圆心到直线的距离为d,则则:drd=rdr.最新人教版数学精品课件设计1.与圆只有一个公共点的直线。与圆只有一个公共点的直线。2.2.圆心到直线的距离等于圆的半径圆心到直线的距离等于圆的半径的直线是圆的切线。的直线是圆的切线。3.经过半径的外端且垂直于这条半径经过半径的外端且垂直于这条半径的直线是圆的切线。的直线是圆的切线。OAl lOAOA是半径是半径,OA l,OA l直线直线l l是是O O的切线的切线.最新人教版数学精品课件设计 例例1 1 ABAB在在O O的的直直径径,点点D D在在ABAB的的延延长长线线上上,

12、且且BD=OB,BD=OB,点点C C在在O O上上,CAB=30,CAB=30证明:证明:CDCD是是O O的切线的切线 只要连接只要连接OCOC,然后证明然后证明OCCDOCCD方法:方法:条件:已经知道要证的直线经过条件:已经知道要证的直线经过了圆上的一点。了圆上的一点。最新人教版数学精品课件设计 例例2.在在RtABC中中,B=90,A的平分线的平分线交交BC于于D,以以D为圆心为圆心,DB长为半径作长为半径作 D.证明证明:AC是是 D的切线的切线.F F 过圆心过圆心D D点作点作DFACDFAC于于F F,然后证明垂线段,然后证明垂线段DFDF半径半径BDBD即可。即可。技巧:技

13、巧:条件中不知道要证的条件中不知道要证的切线是否经过了圆上的切线是否经过了圆上的点。点。最新人教版数学精品课件设计切线的性质切线的性质:圆的切线垂直于圆的切线垂直于 .OAl OA l直线直线l是是 O的切线的切线,切切点为点为A过切点的半径过切点的半径.最新人教版数学精品课件设计切线长定理:切线长定理:从圆外一点引圆的两条切线,它们从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分的切线长相等;这点与圆心的连线平分这两条切线的夹角。这两条切线的夹角。BAPOPA、PB为为 O的切线的切线 PA=PB,APO=BPO最新人教版数学精品课件设计二、过三点的圆及外接圆1.1.怎样的三

14、点确定一个圆?怎样的三点确定一个圆?三点确定一个圆三点确定一个圆2.如何作过不在同一直线上的三点的圆(或如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个三角形的外接圆、找外心、破镜重圆、到三个村庄距离相等)?村庄距离相等)?不在同一直线上不在同一直线上最新人教版数学精品课件设计经过三角形的三个顶点的圆叫做三角形的外接经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。圆的内接三角形。问题问题1 1:如何作三角形的外接圆?:如何作三角形的外接圆?如何找三角形的外心?如何找三角形

15、的外心?最新人教版数学精品课件设计OCBA三角形的外接圆三角形的外接圆 三角形的外心就是三角形三角形的外心就是三角形 的的交点交点.外心到三角形外心到三角形 的距离相等。的距离相等。三个顶点三个顶点三边垂直平分线三边垂直平分线最新人教版数学精品课件设计思考:三角形的外心一定在三角形内吗?思考:三角形的外心一定在三角形内吗?ABCABC是直角三角形是直角三角形ABC是锐角三角形是锐角三角形ABCABC是钝角三角形是钝角三角形最新人教版数学精品课件设计内内外外在斜边的中点处在斜边的中点处锐角三角形的外心在三角形锐角三角形的外心在三角形_,直角三角形的外心在三角形直角三角形的外心在三角形_,钝角钝角

16、三角形的外心在三角形三角形的外心在三角形_。三角形的外心位置:三角形的外心位置:最新人教版数学精品课件设计三角形的内切圆三角形的内切圆:OABC 三角形的内心就是三角形三角形的内心就是三角形 的的交点交点.内心到三角形内心到三角形 的距离相等。的距离相等。三内角平分线三内角平分线三边三边最新人教版数学精品课件设计等边三角形的外心与内心等边三角形的外心与内心 .重要结论重要结论内切圆半径与外接圆半径的比是内切圆半径与外接圆半径的比是 。OABCD1:2.1:2.重合重合.最新人教版数学精品课件设计OABCOABCDFEDFE若若ABC各边分别切各边分别切圆圆O于点于点D、E、F.(2)DEF=9

17、00-A(3)S ABC=(a+b+c)r重要结论重要结论(1)D0F=1800-A最新人教版数学精品课件设计ABCOEFD在在Rt ABC中中,ACB=900,三边三边分别是分别是a、b、c,内切圆半径是内切圆半径是r,则则:内切圆半径内切圆半径r=a+b-c2重要结论重要结论ab求得求得r=S ABC=(a+b+c)r=aba+b+c或者由或者由最新人教版数学精品课件设计ECBAOD常见的基本图形及结论常见的基本图形及结论:1.如图如图,在以在以O为圆心的为圆心的两个同心圆中两个同心圆中,大圆的弦大圆的弦AB交小圆于交小圆于C、D,则则:AC=BD若大圆的弦切小圆于若大圆的弦切小圆于C,则

18、则OACBAC=BC两圆之间的环形面积两圆之间的环形面积S=AB2最新人教版数学精品课件设计与圆有关的辅助线的作法:与圆有关的辅助线的作法:辅助线,辅助线,莫乱添,莫乱添,规律方法记心间;规律方法记心间;圆半径,圆半径,不起眼,不起眼,角的计算常要连,角的计算常要连,构成等腰解疑难;构成等腰解疑难;切点和圆心,切点和圆心,连结要领先;连结要领先;遇到直径想直角,遇到直径想直角,灵活应用才方便。灵活应用才方便。弦与弦心距,弦与弦心距,亲密紧相连;亲密紧相连;最新人教版数学精品课件设计练习题:练习题:1.1.直角三角形的外接圆半径为直角三角形的外接圆半径为直角三角形的外接圆半径为直角三角形的外接圆

19、半径为5cm,5cm,内切圆半径为内切圆半径为内切圆半径为内切圆半径为1cm,1cm,则此三角形的周长是则此三角形的周长是则此三角形的周长是则此三角形的周长是_._.2.2.OO边长为边长为边长为边长为2cm2cm的正方形的正方形的正方形的正方形ABCDABCD的内切圆的内切圆的内切圆的内切圆,E,E、F F切切切切 OO 于于于于P P点,交点,交点,交点,交ABAB、BCBC于于于于E E、F F,则,则,则,则BEFBEF的周长是的周长是的周长是的周长是_._.EF HG22cm22cm2cm2cm最新人教版数学精品课件设计3.如图,如图,O为为ABC的内切圆,切点分的内切圆,切点分别为

20、别为D,E,F,P是弧是弧FDE上的一点,若上的一点,若A+C=110度,则度,则FPE=_度度CoDEAB.FP4 4如如图图,已已知知ABCABC的的三三边边长长分分别别为为AB=4cmAB=4cm,BC=5cmBC=5cm,AC=6cmAC=6cm,O O是是ABCABC的的内内切切圆圆,切切点点分分别别是是E E、F F、G G,则则AE=AE=,BF=BF=,CG=CG=。最新人教版数学精品课件设计圆与圆的位置关系圆与圆的位置关系:.外离外离外切外切相交相交内切内切内含内含最新人教版数学精品课件设计O1O2O1O2O1O2O2O1O1O2两圆的位置关系两圆的位置关系数量关系及识别方法

21、数量关系及识别方法外离外离外切外切相交相交内切内切内含内含dR+rd=R+rd=R-rdR-rR-rdR+r最新人教版数学精品课件设计三三.正多边形正多边形:2.半径:正多边形外接圆的半径叫做这半径:正多边形外接圆的半径叫做这个正多边形的半径个正多边形的半径.中心:一个正多边形外接圆的圆心中心:一个正多边形外接圆的圆心叫做这个正多边形的中心叫做这个正多边形的中心3.中心角:正多边形每一边所对的外接圆中心角:正多边形每一边所对的外接圆的圆心角叫做这个正多边形的中心角的圆心角叫做这个正多边形的中心角4.边心距:中心到正多边形一边的距离边心距:中心到正多边形一边的距离叫做这个正多边形的边心距叫做这个

22、正多边形的边心距OABFDCEG最新人教版数学精品课件设计3 正多边形和圆正多边形和圆(1).有关概念有关概念(2).常用的方法常用的方法(3).正多边形的作图正多边形的作图EFCD.边心距r半径半径半径半径R R R R中心角O O O O边OABCRda最新人教版数学精品课件设计1.1.圆的周长和面积公式圆的周长和面积公式2.2.弧长的计算公式弧长的计算公式3.3.扇形的面积公式扇形的面积公式S=360nr2L L=180nr=12lr lrS或或四四.圆中的有关计算圆中的有关计算:周长周长C=2r面积面积s=r2Or最新人教版数学精品课件设计4.圆锥的展开图圆锥的展开图:底面底面侧面侧面

23、aahrS侧侧=raS全全=ra+r2最新人教版数学精品课件设计1、如图如图,当半径为当半径为30cm的转动轮转过的转动轮转过120时时,传送带上的物体传送带上的物体A平移的距离为平移的距离为_.A最新人教版数学精品课件设计A AC CB BAACC2.2.如图,把如图,把RtABCRtABC的斜边放在直线的斜边放在直线 上,按顺时上,按顺时针方向转动一次针方向转动一次,使它转到使它转到 的位置。若的位置。若BC=1,A=300BC=1,A=300。求点。求点A A运动到运动到AA位置时,点位置时,点A A经过经过的路线长。的路线长。最新人教版数学精品课件设计A AB BC C3.3.如图,在

24、如图,在RtABCRtABC中,中,ACB=900ACB=900。(1)(1)分别以分别以ACAC,BCBC为轴旋转一周所得的圆锥相同吗为轴旋转一周所得的圆锥相同吗?(2)(2)以以ABAB为轴旋转一周得到怎样的几何体?为轴旋转一周得到怎样的几何体?(3)(3)若若AB=5AB=5,BC=4BC=4,你能求出题,你能求出题(2)(2)中几何体的表中几何体的表面积吗?面积吗?最新人教版数学精品课件设计分析:分析:以以AB为轴旋转一周所得到的几何体是由公共为轴旋转一周所得到的几何体是由公共底面的两个圆锥所组成的几何体,因此求全面底面的两个圆锥所组成的几何体,因此求全面积就是求两个圆锥的侧面积。积就是求两个圆锥的侧面积。最新人教版数学精品课件设计4.如图,圆锥的底面半径为如图,圆锥的底面半径为2cm,母线长为,母线长为8cm,一只蚂蚁从底面圆周上一点,一只蚂蚁从底面圆周上一点A出发,出发,沿圆锥侧面爬行一周回到沿圆锥侧面爬行一周回到A点,求蚂蚁爬点,求蚂蚁爬行的最短路线长是多少?行的最短路线长是多少?BAOA最新人教版数学精品课件设计OPBADC3.如图如图,已知已知PA、PB切圆切圆O于点于点A,B,过弧过弧AB上任一点上任一点E作圆作圆O的切线的切线,交交PA,PB于点于点C,D,则则:(1)PCD的周长的周长=2PA(2)COD=900-APBE最新人教版数学精品课件设计

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁