2023年初中几何证明的所有公理和定理.docx

上传人:l**** 文档编号:70122427 上传时间:2023-01-16 格式:DOCX 页数:16 大小:17.50KB
返回 下载 相关 举报
2023年初中几何证明的所有公理和定理.docx_第1页
第1页 / 共16页
2023年初中几何证明的所有公理和定理.docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2023年初中几何证明的所有公理和定理.docx》由会员分享,可在线阅读,更多相关《2023年初中几何证明的所有公理和定理.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年初中几何证明的所有公理和定理 第一篇:初中几何证明的全部公理和定理 初中几何证明的全部公理和定理 1过两点有且只有一条直线两点之间线段最短同角或等角的补角相等 同角或等角的余角相等过一点有且只有一条直线和已知直线垂直 直线外一点与直线上各点连接的全部线段中,垂线段最短 平行公理 经过直线外一点,有且只有一条直线与这条直线平行假如两条直线都和第三条直线平行,这两条直线也互相平行 同位角相等,两直线平行 内错角相等,两直线平行同旁内角互补,两直线平行 12两直线平行,同位角相等两直线平行,内错角相等 两直线平行,同旁内角互补定理 三角形两边的和大于第三边; 推论 三角形两边的差小于第三边

2、三角形内角和定理 三角形三个内角的和等于180推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等角边角公理 有两角和它们的夹边对应相等的两个三角形全等推论 有两角和其中一角的对边对应相等的两个三角形全等边边边公理 有三边对应相等的两个三角形全等 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等定理1 在角的平分线上的点到这个角的两边的距离相等 定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的

3、平分线是到角的两边距离相等的全部点的集合等腰三角形的性质定理 等腰三角形的两个底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60 等腰三角形的判定定理:假如一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边 推论1 三个角都相等的三角形是等边三角形 推论 2 有一个角等于60的等腰三角形是等边三角形 在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半 直角三角形斜边上的中线等于斜边上的一半 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

4、逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 线段的垂直平分线可看作和线段两端点距离相等的全部点的集合 定理1 关于某条直线对称的两个图形是全等形 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理 假如三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定

5、理 四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理 n边形的内角的和等于n-2180 51推论 随便多边的外角和等于360 52平行四边形性质定理1平行四边形的对角相等 53平行四边形性质定理2平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩

6、形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=ab2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组 对角 其次篇:几何证明定理

7、 几何证明定理 一.直线与平面平行的(判定) 1.判定定理.平面外一条直线假如平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面) 二.平面与平面平行的(判定) 1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行 2.关键:判定两个平面是否有公共点 三.直线与平面平行的(性质) 1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线 四.平面与平面平行的(性质) 1.性质:假如两个平行平面同时和第三个平面相交,那么他们的交线平行 2.应用:通

8、过做与两个平行平面都相交的平面得到交线,实现线线平行 五:直线与平面垂直的(定理) 1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 2.应用:假如一条直线与一个平面垂直,那么这条直线垂直于这个平面内全部的直线(线面垂直线线垂直) 六.平面与平面的垂直(定理) 1.一个平面过另一个平面的垂线,则这两个平面垂直 (或者做二面角判定) 2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换 七.平面与平面垂直的(性质) 1.性质一:垂直于同一个平面的两条垂线平行 2.性质二:假如两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 3

9、.性质三:假如两个平面互相垂直,那么经过第一个平面内的一点垂直于其次个平面内的直线,在第一个平面内(性质三没什么用,可以不用记) 以上,是立体几何的定理和性质整理.是确定要记住的基本! 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35推论1三个角都相等的三角形是等边三角形 36推论2有一个角等于60的等腰三角形是等边三角形 37在直角三角形中,假如一个锐角等于30那么它所对的直角边等

10、于斜边的一半 38直角三角形斜边上的中线等于斜边上的一半 39定理线段垂直平分线上的点和这条线段两个端点的距离相等 40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41线段的垂直平分线可看作和线段两端点距离相等的全部点的集合42定理1关于某条直线对称的两个图形是全等形 43定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方

11、,即a+b=c 47勾股定理的逆定理假如三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理n边形的内角的和等于(n-2)180 51推论随便多边的外角和等于360 52平行四边形性质定理1平行四边形的对角相等 53平行四边形性质定理2平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线互相平分 56平行四边形判定定理1两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3

12、对角线互相平分的四边形是平行四边形 59平行四边形判定定理4一组对边平行相等的四边形是平行四边形 60矩形性质定理1矩形的四个角都是直角 61矩形性质定理2矩形的对角线相等 62矩形判定定理1有三个角是直角的四边形是矩形。 第三篇:证明、公理、平行线性质定理 证明的必要性、公理与定理、平行线的判定公定理、平行线的性质公定理 基础学问1.证明: 2.公理:3.定理: 4.等量代换:公理: 5.平行线的判定定理:定理:公理 6.平行线的性质定理定理:基础习题 1.以下说法正确的选项是 A.全部的定义都是命题B.全部的定理都是命题 C.全部的公理都是命题D.全部的命题都是定理 22.若PP5是一个质

13、数,而P-1除以24没有余数,则这种状况 A.绝不行能B.只是有时可能 C.总是可能D.只有当P=5时可能 3.以下关于两直线平行的表达不正确的选项是() A.同位角相等,两直线平行;B.内错角相等,两直线平行毛 C.同旁内角不互补,两直线不平行;D.假如ab,bc,那么ac 14.如左图,以下说法错误的选项是lllll3A、12,34B、34,34 lllll4C、13,34D、23,12 ll55.已知:如图,以下条件中,不能推断直线12的l1A、13B、2 3C、24D、45180 6.若两条平行线被第三条直线所截,则以下说法错误的l 2A、一对同位角的平分线互相平行B、一对内错角的平分

14、线互相平行 C、一对同旁内角的平分线互相平行D、一对同旁内角的平分线互相垂直 7.如图,ABCD,BAA、50B、80C、85D、95 C8.已知A50,A的两边分别平行于B的两边,则BAB A、50B、130C、100D、50或130 9.如图,ABCD,AD、BC相交于O,BAD35,BOD76,则C的度数是A、31B、35 C、41D、76 填空 10.如图,1假如ABCD,必需具备条件_,D根据是_。2要使ADBC,必需具备条件_,根据是 4_。B 11.如图,给出了过直线外一点作已知直线的平行线的方法,其根据是_。 D12.如图,已知130,B60,ABAC。1计算:DABB= 2A

15、B与CD平行吗?AD与BC平行吗?B 简答题: 13.如图,已知ADE60,DF平分ADE,130,求证:DFBE 证明:DF平分ADE已知A 1_=ADE 2ADE60已知D_30 130已知 _BC_ 14.已知:如图,B=C.(1)若ADBC,求证:AD平分EAC; (2)AD平分EAC,求证:ADBC.15、如图,已知DEBC,CD是ACB的平分线,B70,ACB50,求EDC和BDC的度数.实力提升 16.1如图1,ABEF.求证:1BCF=B+F.2当点C在直线BF的右侧时,如 图2,若ABEF,则BCF与B,F的关系如何?请说明理由.D BC 第四篇:中学几何证明定理 中学几何证

16、明定理 一.直线与平面平行的(判定) 1.判定定理.平面外一条直线假如平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面) 二.平面与平面平行的(判定) 1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行 2.关键:判定两个平面是否有公共点 三.直线与平面平行的(性质) 1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线 四.平面与平面平行的(性质) 1.性质:假如两个平行平面同时和第三个平面相交,那么他们的交线平行 2.应用:通过做与两

17、个平行平面都相交的平面得到交线,实现线线平行 五:直线与平面垂直的(定理) 1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 2.应用:假如一条直线与一个平面垂直,那么这条直线垂直于这个平面内全部的直线(线面垂直线线垂直) 六.平面与平面的垂直(定理) 1.一个平面过另一个平面的垂线,则这两个平面垂直 (或者做二面角判定) 2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换 七.平面与平面垂直的(性质) 1.性质一:垂直于同一个平面的两条垂线平行 2.性质二:假如两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 3.性质三

18、:假如两个平面互相垂直,那么经过第一个平面内的一点垂直于其次个平面内的直线,在第一个平面内(性质三没什么用,可以不用记) 以上,是立体几何的定理和性质整理.是确定要记住的基本!。 想要变-态的这里多的是- 欧拉定理&欧拉线&欧拉公式(不一样) 九点圆定理 葛尔刚点 费马定理(费马点(也叫做费尔马点) 海伦-公式 共角比例定理 张角定理 帕斯卡定理 曼海姆定理 卡诺定理 芬斯勒-哈德维格不等式(几何的) 外森匹克不等式(同上) 琴生不等式(同上) 塞瓦定理 梅涅劳斯定理 斯坦纳定理 托勒密定理 分角线定理(与角分线定理不同) 斯特瓦尔特定理 切点弦定理 西姆松定理。 第五篇:初中数学几何定理集锦

19、 初中数学几何定理集锦 1。同角或等角的余角相等。 3。对顶角相等。 5。三角形的一个外角等于和它不相邻的两个内角之和。 6。在同一平面内垂直于同一条直线的两条直线是平行线。 7。同位角相等,两直线平行。 12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。 16。直角三角形中,斜边上的中线等于斜边的一半。 19。在角平分线上的点到这个角的两边距离相等。及其逆定理。 21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。 22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。 24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。

20、25。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。 27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。 34。在同圆或等圆中,假如两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。 36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦不是直径的直径垂直于弦,并且平分弦所对的弧。 43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相像。 46。相像三角形对应高线的比,对应中线的比和对应角平分线的比都等于相像比。相像三角形面积的比等于相像比的平方。 37圆内接四边形的对角互补,并且任何一个外角等于它的内对角。 47。切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。 48。切线的性质定理经过圆心垂直于切线的直线必经过切点。圆的切线垂直于经过切点的半径。经过切点垂直于切线的直线必经过圆心。 49。切线长定理从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。 50。弦切角定理弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。 51。相交弦定理;切割线定理 ; 割线定理

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁