人教A版(2019)高中数学必修第一册2.2 基本不等式课件.pptx

上传人:jx****3 文档编号:70031948 上传时间:2023-01-14 格式:PPTX 页数:28 大小:714.55KB
返回 下载 相关 举报
人教A版(2019)高中数学必修第一册2.2 基本不等式课件.pptx_第1页
第1页 / 共28页
人教A版(2019)高中数学必修第一册2.2 基本不等式课件.pptx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《人教A版(2019)高中数学必修第一册2.2 基本不等式课件.pptx》由会员分享,可在线阅读,更多相关《人教A版(2019)高中数学必修第一册2.2 基本不等式课件.pptx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、PPT模板: PPT课件: 基本不等式性质 复习引入ab一类重要不等式一类重要不等式如果用如果用如果用如果用 、分别代替结论中的分别代替结论中的分别代替结论中的分别代替结论中的 、,替换之后我们又会得到了什么结论呢?替换之后我们又会得到了什么结论呢?替换之后我们又会得到了什么结论呢?替换之后我们又会得到了什么结论呢?通常把上式写作通常把上式写作通常把上式写作通常把上式写作探究探究:讨论:a,b 取值范围“基本不等式”定理定理:如果是正数,那么(当且仅当时取“=”)算数平算数平均数均数几何平几何平均数均数两个正数的算数平均数不小于他们的几何平均数PPT模板: PPT课件: PPT课件: PPT课

2、件: OD=_ CD=_ OD_CDab“半径不小于半弦半径不小于半弦”PPT模板: PPT课件: PPT课件: f(x)=x+(x0),求函数的最小值和此时x的取值例题讲解解:因为x,所以当且仅当x ,即x,x时,等号成立,因此所求的最小值为基本不等式使用注意:一正 二定 三相等PPT模板: PPT课件: 法求解吗?分析:需要考虑x0解:因为x,所以当且仅当-x-,即x,x-时,等号成立,因此所求的最大值为-注意:此时只有最大值没有最小值PPT模板: PPT课件: y取最小值2(2)当x0.例例2.求函数求函数 f(x)=x+(x-1)的最小值的最小值.1x+1 例题讲解凑配法PPT模板:

3、PPT课件: 求函求函数的最小值数的最小值 当x=3是函数有最小值6针对练习PPT模板: PPT课件: PPT课件: 已知x,y都是正数,求证:()如果积xy等于定值p,那么当xy时,和xy有最小值 ;()如果和xy等于定值s,那么当xy时,积xy有最大值 PPT模板: PPT课件: x,y 都是正数,都是正数,P,S 是常数是常数.(1)xy=P x+y2 P(当且仅当当且仅当 x=y 时,取时,取“=”号号).(2)x+y=S xy S2(当且仅当当且仅当 x=y 时,取时,取“=”号号).14 利用基本不等式求最值利用基本不等式求最值PPT模板: PPT课件: 常数常数.2=1为为 解解

4、:0 x0.12y=x(1-2x)=2x(1-2x)12 22x+(1-2x)21218=.当且仅当当且仅当 时,取时,取“=”号号.2x=(1-2x),即即 x=14当当 x=时时,函数函数 y=x(1-2x)的最大值是的最大值是 .14181.若若 0 x0,y0,xy=24,求,求4x+6y的最小值,的最小值,并说明此时并说明此时x,y的值的值3 已知已知x0,y0,且,且x+2y=1求求的最小值的最小值.当x=6,y=4时,最小值为48针对练习PPT模板: PPT课件: PPT课件: PPT课件: PPT课件: PPT课件: m的篱笆围成一个一边靠墙的矩的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少园的面积最大,最大面积是多少?PPT模板: PPT课件: ,则另一边的长度为 ,又设水池总造价为 元,根据题意,得PPT模板: PPT课件: PPT课件: PPT课件: PPT课件: 二定 三相等课堂小结

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁