《(精品)1.1.2四种命题 (6).ppt》由会员分享,可在线阅读,更多相关《(精品)1.1.2四种命题 (6).ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、四种命题及其关系四种命题及其关系1.1.2-1.1.3 四种命题下列四个命题中,命题下列四个命题中,命题(1)与命题与命题(2)(3)(4)的条件和结论之间分别有什么关系?的条件和结论之间分别有什么关系?1.若若f(x)是正弦函数,则是正弦函数,则f(x)是周期函数;是周期函数;2.若若f(x)是周期函数,则是周期函数,则f(x)是正弦函数;是正弦函数;3.若若f(x)不是正弦函数,则不是正弦函数,则f(x)不是周期函数;不是周期函数;4.若若f(x)不是周期函数,则不是周期函数,则f(x)不是正弦函数。不是正弦函数。观察命题观察命题(1)与命题与命题(2)的条件和结论之间的条件和结论之间分别
2、有什么关系?分别有什么关系?1.若若f(x)是正弦函数,则是正弦函数,则f(x)是周期函数;是周期函数;2.若若f(x)是周期函数,则是周期函数,则f(x)是正弦函数;是正弦函数;互逆命题互逆命题:一个命题的条件和结论分别是另一个命题的:一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题叫做互逆命题。结论和条件,这两个命题叫做互逆命题。原原 命命 题题:其中一个命题叫做原命题。:其中一个命题叫做原命题。逆逆 命命 题题:另一个命题叫做原命题的逆命题。:另一个命题叫做原命题的逆命题。pqqp即即 原命题原命题:若若p,则则q逆命题逆命题:若若q,则则p例如,命题例如,命题“同位角相等,
3、两直线平行同位角相等,两直线平行”的逆命题是的逆命题是“两两直线平行,同位角相等直线平行,同位角相等”。原命题与其逆原命题与其逆原命题与其逆原命题与其逆命题的真假是命题的真假是命题的真假是命题的真假是否存在相关性否存在相关性否存在相关性否存在相关性呢呢呢呢?观察命题观察命题(1)与命题与命题(3)的条件和结论之间的条件和结论之间分别有什么关系?分别有什么关系?1.若若f(x)是正弦函数,则是正弦函数,则f(x)是周期函数;是周期函数;3.若若f(x)不是正弦函数,则不是正弦函数,则f(x)不是周期函数不是周期函数.pqp 原命题原命题:若若p,则则qq 为书写简便为书写简便,常把条件常把条件p
4、的否定和结论的否定和结论q的否定分别记作的否定分别记作“p”“q”否命题否命题:若若p,则则q互否命题互否命题 原命题原命题 (原命题的原命题的)否命题否命题例如,命题例如,命题“同位角相等,两直线平行同位角相等,两直线平行”的否命题是的否命题是“同同位角不相等,两直线不平行位角不相等,两直线不平行”。原命题与其否原命题与其否原命题与其否原命题与其否命题的真假是命题的真假是命题的真假是命题的真假是否存在相关性否存在相关性否存在相关性否存在相关性呢呢呢呢?观察命题观察命题(1)与命题与命题(4)的条件和结论之间的条件和结论之间分别有什么关系?分别有什么关系?1.若若f(x)是正弦函数,则是正弦函
5、数,则f(x)是周期函数;是周期函数;4.若若f(x)不是周期函数,则不是周期函数,则f(x)不是正弦函数不是正弦函数.pqq 原命题原命题:若若p,则则qp逆否命题逆否命题:若若q,则则p 互为逆否命题互为逆否命题 原命题原命题 (原命题的原命题的)逆否命题逆否命题例如,命题例如,命题“同位角相等,两直线平行同位角相等,两直线平行”的逆否命题是的逆否命题是“两直线不平行,同位角不相等两直线不平行,同位角不相等”。原命题与其逆原命题与其逆原命题与其逆原命题与其逆否命题的真假否命题的真假否命题的真假否命题的真假是否存在相关是否存在相关是否存在相关是否存在相关性呢性呢性呢性呢?、互否命题:互否命题
6、:如果第一个命题的条件和结论是第二个命题如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做的条件和结论的否定,那么这两个命题叫做互否命题互否命题。如果。如果把其中一个命题叫做把其中一个命题叫做原命题原命题,那么另一个叫做,那么另一个叫做原命题的否命原命题的否命题题。、互为逆否命题:互为逆否命题:如果第一个命题的条件和结论分别是第如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题互为逆否命题。、互逆命题:互逆命题:如果第一个命题的条件(或题设)是第二个如果第一个命题的条件
7、(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫么这两个命题叫互逆命题互逆命题。如果把其中一个命题叫做。如果把其中一个命题叫做原命题原命题,那么另一个叫做原命题的那么另一个叫做原命题的逆命题逆命题。1 1、三个概念、三个概念四四 种种 命命 题题 的的 相相 互互 关关 系系原命题原命题若若p则则q逆命题逆命题若若q则则p否命题否命题若若 p则则 q逆否命题逆否命题若若 q则则p互为逆否互为逆否 同同真真同同假假互为逆否互为逆否 同同真真同同假假互逆命题互逆命题 真假真假无关无关互逆命题互逆命题 真假真假无
8、关无关互互否否命命题题真真假假无无关关互互否否命命题题真真假假无无关关原命题原命题逆命题逆命题否命题否命题逆否命逆否命题题真真真真真真真真真真假假假假真真假假真真真真假假假假假假假假假假2 2、四种命题的真假性、四种命题的真假性,有而且仅有有而且仅有下面四种情况下面四种情况:原命题与逆否命题同真同假,否命原命题与逆否命题同真同假,否命题与逆命题同真同假题与逆命题同真同假例例 设原命题是设原命题是“当当c 0 时,若时,若a b,则,则ac bc”,写出它,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假:的逆命题、否命题、逆否命题,并分别判断它们的真假:解:解:逆命题:当逆命题:当c 0
9、 时,若时,若ac bc,则,则a b 逆命题为真逆命题为真否命题:当否命题:当c 0 时,若时,若a b,则,则ac bc 否命题为真否命题为真逆否命题:当逆否命题:当c 0 时,若时,若ac bc,则,则a b 逆否命题为真逆否命题为真原结论原结论 反设词反设词 原结论原结论 反设词反设词 或或且且至少有一个至少有一个 都是都是 至多有一个至多有一个 大于大于 至少有至少有n n个个 小于小于 至多有至多有n n个个 对所有对所有x,x,成立成立对任何对任何x x,不成立不成立 准准确确地地作作出出反反设设(即即否否定定结结论论)是是非非常常重重要要的的,下面是一些常见的结论的否定形式下面
10、是一些常见的结论的否定形式.不都是不都是不大于不大于大于或等于大于或等于一个也没有一个也没有至少有两个至少有两个至多有(至多有(n-1)个个至少有(至少有(n+1)个个存在某存在某x,不成立不成立存在某存在某x,成立成立练习:分别写出下列命题的逆命题、否命练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。题、逆否命题,并判断它们的真假。(1)若)若q2,那么那么q2-p,根据幂函数根据幂函数 的单调性,得的单调性,得即即所以所以 因此因此2023/1/12可能出现矛盾四种情况:可能出现矛盾四种情况:l与题设矛盾;与题设矛盾;l与反设矛盾;与反设矛盾;l与公理、定理矛盾;与公理、定理矛盾;l在证明过程中,推出自相矛盾的结论。在证明过程中,推出自相矛盾的结论。2023/1/12这些条件都与已知这些条件都与已知矛盾矛盾所以原命题所以原命题成立成立证明证明:假设假设不大于不大于则则或或因为因为所以所以练一练练一练 用反证法证明:用反证法证明:如果如果ab0ab0,那么,那么 .l小结与作业小结与作业