《【教学课件】第四章生产理论.ppt》由会员分享,可在线阅读,更多相关《【教学课件】第四章生产理论.ppt(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第四章第四章生产理论生产理论本章分析决定供给的生产者行为本章分析决定供给的生产者行为本章分析决定供给的生产者行为本章分析决定供给的生产者行为生产者称为厂商生产者称为厂商生产者称为厂商生产者称为厂商(Firm)(Firm),是指能作出统一生产决策的经济单位。包包括个人、合伙和公司性质的经营组织形式。括个人、合伙和公司性质的经营组织形式。厂商被假定为是合乎理性的经济人,提供产品的目的在于厂商被假定为是合乎理性的经济人,提供产品的目的在于追求最大的利润。追求最大的利润。在生产者行为的分析中在生产者行为的分析中在生产者行为的分析中在生产者行为的分析中,假定厂商以利润最大化为目标。假定厂商以利润最大化为
2、目标。假定厂商以利润最大化为目标。假定厂商以利润最大化为目标。厂商为了追求最大利润,总是尽可能使生产特定产量所支出的成本为最小,或使消耗一定量成本所生产的产量为最大。最大利润原则支配着厂商的行为,预期利润的多少决定着商品的生产量或供给量。要实现利润最大化,可从两方面考察:要实现利润最大化,可从两方面考察:要实现利润最大化,可从两方面考察:要实现利润最大化,可从两方面考察:从实物角度考察投入的生产要素与产量之间的物质技术关系,构成了生产理论生产理论生产理论生产理论;从价格、货币角度考察投入的成本与销售收益之间的经济关系,构成了成本理论成本理论成本理论成本理论。1第四章第四章生产理论生产理论一、教
3、学目的和要求一、教学目的和要求本章的生产论和下一章的成本论将分析供给曲线背后的生产者行为,并从对生产者行为的分析中推导出供给曲线。因因而,生产论和成本论通常也被合称为生而,生产论和成本论通常也被合称为生产者行为理论。产者行为理论。本章的学习,掌握短期生产函数和本章的学习,掌握短期生产函数和长期生产函数。长期生产函数。2第四章生产理论 二、教二、教学的重点和难点学的重点和难点1.理解生产函数的概念理解生产函数的概念2.经济学中的长期与短期经济学中的长期与短期3.总产量、平均产量和边际产量的关系总产量、平均产量和边际产量的关系4.边际报酬递减规律边际报酬递减规律5.一种生产要素合理投入的数量界限一
4、种生产要素合理投入的数量界限6.等产量线有哪些重要性质等产量线有哪些重要性质7.多种投入要素的最优组合是怎样确定的多种投入要素的最优组合是怎样确定的8.企业规模扩大情况下生产函数的特征企业规模扩大情况下生产函数的特征9.规模报酬递增的原因规模报酬递增的原因3第四章生产理论 三、教学的基本内容三、教学的基本内容生产理论研究的是企业行为。在生产理论中,企业被假定为是具有完全理性的经济人,其生产目的是实现利润最大化。考察企业行为正是围绕企业如何实现利润最大化这一中心进行的。研究企业如何实现利润最大化涉及到三个问题:三个问题:一是投入的生产要素与产量之间的关系,即在企业内部实行有限资源的配置效率;二是
5、生产中使用的成本与收益之间的经济关系;三是企业在不同的市场条件下,应该如何确定自己的产量和价格。以上三个问题分三章介绍。本章把企业的生产活动抽象为生以上三个问题分三章介绍。本章把企业的生产活动抽象为生产函数这种形式,在此基础上研究企业要实现利润最大化如何使产函数这种形式,在此基础上研究企业要实现利润最大化如何使自己的有限资源得到有效配置。自己的有限资源得到有效配置。4第四章第四章生产理论生产理论第一节第一节生产函数生产函数第二节第二节短期生产函数:一种生产要素的短期生产函数:一种生产要素的合理投入合理投入第三节第三节长期生产函数(一):长期生产函数(一):多种生产多种生产要素的最优组合要素的最
6、优组合第四节第四节长期生产函数(二):长期生产函数(二):规模报酬规模报酬5厂商经济行为模型利润最大化总收入总成本产品销售量产品价格要素雇佣量要素价格6第一节第一节生产函数生产函数一、生产函数一、生产函数1.生产要素生产要素(FactorofProduction)包括劳动(Labour)、资本(Capital)、土地(Land)和企业家才能(Enter-Preneurship)。劳动指一切有经济意义的活动;资本包括资本品和商标专利等无形资产;土地包括一切自然力;企业家才能指企业家组织生产、创新、承担风险的能力。7第一节第一节生产函数生产函数2.2.生产函数生产函数生产函数生产函数(Produc
7、tionFunction)即表示在某一时期和一定的技术水平下,各种要素投入量的某一种组合,同它所能产出的最大可能的产量之间的依存关系。函数公式Q=F(L,K,N,E)其经济含义是:在既定的技术条件下,生其经济含义是:在既定的技术条件下,生其经济含义是:在既定的技术条件下,生其经济含义是:在既定的技术条件下,生产产产产QQ数量的某产品取决于所投入的数量的某产品取决于所投入的数量的某产品取决于所投入的数量的某产品取决于所投入的L L,KK,N N,E E等生产要素的组合与数量。等生产要素的组合与数量。等生产要素的组合与数量。等生产要素的组合与数量。为了分析方便起见,通常把生产函数表达为了分析方便起
8、见,通常把生产函数表达为了分析方便起见,通常把生产函数表达为了分析方便起见,通常把生产函数表达式简化为:式简化为:式简化为:式简化为:Q=F(L,K)Q=F(L,K)8理解生产函数的概念需要注意以下几个问题:理解生产函数的概念需要注意以下几个问题:理解生产函数的概念需要注意以下几个问题:理解生产函数的概念需要注意以下几个问题:第一,生产函数中的产量,是指一定的投入要素组合所能生产出来的最大产量,也就是说,生产函数所反映的投入与产出关系是以企业的投入要素都得到充分利用为假定条件的。第二,生产函数取决于技术水平。生产技术的改进,可能会改变投入要素的比例,导致新的投入产出关系,即新的生产函数。第三,
9、生产一定量某种产品所需要的各种生产要素的配合比例被称为技术系数。它可以是固定的,但更多情况下是可以改变的。第一节第一节生产函数生产函数9注意:注意:生产函数的前提条件生产函数的前提条件是一定时期内既定的生产技是一定时期内既定的生产技术水平,一旦生产技术水平术水平,一旦生产技术水平变化,原有生产函数就会变变化,原有生产函数就会变化,从而形成新的生产函数。化,从而形成新的生产函数。10第一节第一节生产函数生产函数3、常见的生产函数、常见的生产函数(1)固定投入比例生产函数)固定投入比例生产函数固定投入比例生产函数固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函
10、数。假定生产中只使用劳动(L)和资本(K)两种生产要素,则固定投入比例生产函数通常写为:11第一节第一节生产函数生产函数其中,Q表示一种产品的产量,U和V分别为固定的劳动和资本的生产技术系数,各表示生产一单位产品所需的固定的劳动的投入量和资本的投入量。该生产函数表示:产量Q取决于和这两个比值中较小的一个。这是因为Q的生产被假定为必须按照L和K之间的固定比例,当一种生产要素数量固定时,另一种生产要素数量再多,也不能增加产量。该生产函数一般又假定劳动(L)和资本(K)两种生产要素都满足最小的要素投入组合的要求,则有:12第一节第一节生产函数生产函数上式表示两种生产要素的固定投入比例上式表示两种生产
11、要素的固定投入比例等于两种生产要素的固定生产技术系数等于两种生产要素的固定生产技术系数之比。之比。就固定投入比例生产函数而言,当产量就固定投入比例生产函数而言,当产量发生变化时,各要素的投入量以相同的发生变化时,各要素的投入量以相同的比例发生变化,故各要素的投入量之间比例发生变化,故各要素的投入量之间的比例维持不变。的比例维持不变。13第一节第一节生产函数生产函数(2 2)柯布)柯布)柯布)柯布道格拉斯生产函数道格拉斯生产函数道格拉斯生产函数道格拉斯生产函数 柯布柯布柯布柯布道格拉斯生产函数道格拉斯生产函数道格拉斯生产函数道格拉斯生产函数是由数学家柯布和经济学家道格拉斯于20世纪30年代初共同
12、提出的。该生产函数的一般形式为:其中,其中,A、均为参数,均为参数,01,01。参数参数、的经济含义是:的经济含义是:当当当当+1 1时时时时,、各表示劳动和资本在生产过各表示劳动和资本在生产过程中的相对重要性,程中的相对重要性,为劳动所得在总产量中所占份额,为劳动所得在总产量中所占份额,为资本所得在总产量中所占份额;为资本所得在总产量中所占份额;根据根据根据根据、之和之和之和之和,判断规模报酬。当,判断规模报酬。当+1,则,则为规模报酬递增;当为规模报酬递增;当+1,则为规模报酬不变;当,则为规模报酬不变;当+1,则为规模报酬递减。,则为规模报酬递减。14二、长期与短期二、长期与短期二、长期
13、与短期二、长期与短期经济学上所说的经济学上所说的“短期短期”、“长期长期”不是指一不是指一个具体的时间跨度,而是指能否来得及调整全部生个具体的时间跨度,而是指能否来得及调整全部生产要素的时期。产要素的时期。短期是指企业不能根据它所要达到的产量来调短期是指企业不能根据它所要达到的产量来调整全部生产要素的时期,整全部生产要素的时期,也就是说,在这一时期内,也就是说,在这一时期内,企业为了实现产量目标,只能调整劳动、原材料、企业为了实现产量目标,只能调整劳动、原材料、燃料这类生产要素,而来不及调整厂房、设备、管燃料这类生产要素,而来不及调整厂房、设备、管理人员这类生产要素。理人员这类生产要素。第一节
14、第一节生产函数生产函数15第一节生产函数长期是指企业可以根据其产量目标调长期是指企业可以根据其产量目标调整全部生产要素的时期。整全部生产要素的时期。例如,企业根例如,企业根据它要达到的产量,可以缩小或扩大生据它要达到的产量,可以缩小或扩大生产规模,也可以进入或退出一个行业的产规模,也可以进入或退出一个行业的生产。生产。显然,短期和长期的划分是以企业显然,短期和长期的划分是以企业能否变动全部生产要素的投入量为标准能否变动全部生产要素的投入量为标准的。的。不同的行业,短期和长期的时间长不同的行业,短期和长期的时间长度不同。度不同。16注意:注意:短期和长期的划分并非按照具体短期和长期的划分并非按照
15、具体的时间长短。对于不同的产品生产,短的时间长短。对于不同的产品生产,短期和长期的具体时间的规定是不同的。期和长期的具体时间的规定是不同的。例如,变动一个大型炼油厂的规模可能例如,变动一个大型炼油厂的规模可能需要五年,则其短期和长期的划分以五需要五年,则其短期和长期的划分以五年为界,而变动一个小食店的规模可能年为界,而变动一个小食店的规模可能只需要一个月,则其短期和长期的划分只需要一个月,则其短期和长期的划分仅为一个月。仅为一个月。17三、短期生产函数与长期生产函数三、短期生产函数与长期生产函数三、短期生产函数与长期生产函数三、短期生产函数与长期生产函数短期生产函数研究在其它要素的投入不变时,
16、一种生产要素的投入和产量之间的关系,以及这种可变生产要素的合理投入量是多少。例如,假设资本例如,假设资本例如,假设资本例如,假设资本投入量不变,劳动投入量可变,投入量不变,劳动投入量可变,投入量不变,劳动投入量可变,投入量不变,劳动投入量可变,则生产函数可表示为:则生产函数可表示为:则生产函数可表示为:则生产函数可表示为:Q=fQ=f(L L)。)。)。)。这就是短期生产函数,它采用的是一种可变要这就是短期生产函数,它采用的是一种可变要素投入变动的生产函数形式。短期生产函数反映了素投入变动的生产函数形式。短期生产函数反映了既定资本投入量下,一种劳动要素投入量与所能生既定资本投入量下,一种劳动要
17、素投入量与所能生产的最大产量之间的相互关系。产的最大产量之间的相互关系。第一节第一节 生产函数生产函数18长期生产函数研究多种要素投入组合和产量之间的关系,即考察企业如何把既定的成本用于多种生产要素的购买,以实现利润最大化。在生产理论中,通常以两种生产要素的生产函数在生产理论中,通常以两种生产要素的生产函数来考察长期生产问题。来考察长期生产问题。假定企业使用的劳动和资本都是可变的,则生产函数可以表示为:Q=fQ=f(L L,KK),这就是长期生产函数。它表示在技术水平不变的条件下,由两种生产要它表示在技术水平不变的条件下,由两种生产要素的投入组合所能生产的最大产量。素的投入组合所能生产的最大产
18、量。第一节第一节生产函数生产函数19第二节第二节第二节第二节 短期生产函数:一种生产要素的合理投入短期生产函数:一种生产要素的合理投入短期生产函数:一种生产要素的合理投入短期生产函数:一种生产要素的合理投入假定资本和其它要素固定不变,只变动劳动要素的数量,则生产函数为Q=f(L);这时可通过总产量TP、平均产量AP和边际产量MP这三个概念来说明要素投入与产量的变动关系。一、实物产量的种类一、实物产量的种类一、实物产量的种类一、实物产量的种类(1)总产量:使用一定量的某种要素投入所获得的产量总和。即 TP=Q=f(L)=APL(2)平均产量:平均每单位变动要素投入所能生产的产量。即 AP=TP/
19、L=f(L)/L(3)边际产量:每增加一单位变动要素投入所增加的总产量。即 MP=TP/L=dTP/dLLTPAPMP01234567808203648556060560810121211108.6708121612750-420二、实物产量变化的三个阶段二、实物产量变化的三个阶段二、实物产量变化的三个阶段二、实物产量变化的三个阶段QTPAPMPLOL1L2L3Q2Q1L4Q3T2NT3第一阶段:从O-L3劳动的边际产量大于劳动的平均产量,从而使劳动的平均产量和总产量都在增加。第二阶段:从 L3-L4总产量由B点到达最高点C的阶段。劳动的边际产量小于劳动的平均产量,从而使平均产量递减,但边际产
20、量大于零,总产量仍以递减的速度递增。第三阶段:从L4以后总产量从其最高点C开始下降,边际产量为负,因此为负报酬阶段。依据三个阶段的不同变动情况,可确定生产要素的合理投入区域。总产量、平均产量、边际产量曲线总产量、平均产量、边际产量曲线总产量、平均产量、边际产量曲线总产量、平均产量、边际产量曲线Q4BCDE几何测定:AP=直线的斜率=OQ1/O L1=FL1/O L1MP=切线的斜率=Q2Q3/L2L3=Q/L=KB/NK=TP线的斜率。FKT1T421三、三种实物产量的关系三、三种实物产量的关系(1)总产量与平均产量)总产量与平均产量总产量曲线上任何一点的平均产量,就是原点O到这一点射线的斜率
21、。开始时,射线随总产量的增大而增大,平均产量递增;当射线当射线与总产量线切于与总产量线切于B点时,其斜率最大,即平均点时,其斜率最大,即平均产量最大。产量最大。过了B点,其斜率递减,即平均产量递减。22(2)总产量与边际产量)总产量与边际产量总产量曲线上任何一点的边际产量,就是这一点切线的斜率。在拐点N之前,切线的斜率为正且递增,即边际产量递增;到N点,切线的斜率最大,即边际产量最大;过N点以后切线的斜率递减,即边际产量递减;到达C点时,切线斜率为0,即边际产量为0;过C点以后,切线的斜率由正变负,边际产量为负数,总产量也开始下降。23(3)平均产量与边际产量)平均产量与边际产量当边际产量大于
22、平均产量时,平均产量递增;当边际产量小于平均产量时,平均产量递减;当边际产量等于平均产量时,平均产量最大,说明边际产量过平均产量曲线的最高点。24四、边际收益递减规律四、边际收益递减规律定义:在其它要素投入量保持不变的条件下,如果连续追加相同数量的某种要素投入,其产量的增加在达到某一点后会减少。边际收益递减规律的前提条件:(1)技术水平既定不变;)技术水平既定不变;(2)生产要素的投入比例可变;)生产要素的投入比例可变;(3)增加的要素须有同等的效率。)增加的要素须有同等的效率。25在图中,可以看出边际产量表现出先上升而后下降的变动趋势,这一变动趋势被称为边这一变动趋势被称为边际报酬递减规律,
23、也称边际收益递减规律。际报酬递减规律,也称边际收益递减规律。边际报酬递减规律是指在技术水平不变的条件下,当把一种可变生产要素投入到一种或几种不变生产要素中时,最初边际产量是递增的,但当该生产要素的增加超过一定限度但当该生产要素的增加超过一定限度时,边际产量会递减,甚至还会绝对减少。时,边际产量会递减,甚至还会绝对减少。26理解边际报酬递减规律需要注意以下几点:理解边际报酬递减规律需要注意以下几点:理解边际报酬递减规律需要注意以下几点:理解边际报酬递减规律需要注意以下几点:第一,技术水平不变。即生产技术没有重大变化。否则在保持其它要素不变而连续增加某种生产要素时,边际报酬不一定递减,而可能递增。
24、第二,生产要素投入量的比例可变。也就是说,只有在保持其它生产要素不变而只增加一种生产要素的投入量时,边际报酬递减才会发生。如果各种生产要素投入量同比例增加,边际报酬不一定递减。第三,在其它生产要素不变时,连续增加一种可变要素的投入量,边际产量的变动经历递增、递减和变为负值三个阶段。需要注意的是,边际产量递增与边际报酬递减规律需要注意的是,边际产量递增与边际报酬递减规律需要注意的是,边际产量递增与边际报酬递减规律需要注意的是,边际产量递增与边际报酬递减规律并不矛盾。因为边际报酬递减规律的意义是:连续增加并不矛盾。因为边际报酬递减规律的意义是:连续增加并不矛盾。因为边际报酬递减规律的意义是:连续增
25、加并不矛盾。因为边际报酬递减规律的意义是:连续增加一种可变要素的投入量,迟早会出现边际报酬递减的趋一种可变要素的投入量,迟早会出现边际报酬递减的趋一种可变要素的投入量,迟早会出现边际报酬递减的趋一种可变要素的投入量,迟早会出现边际报酬递减的趋势,而不是一开始就递减。势,而不是一开始就递减。势,而不是一开始就递减。势,而不是一开始就递减。27边际报酬递减规律存在的原因是:边际报酬递减规律存在的原因是:边际报酬递减规律存在的原因是:边际报酬递减规律存在的原因是:在任何产品的生产过程中,可变要素投入量和不在任何产品的生产过程中,可变要素投入量和不在任何产品的生产过程中,可变要素投入量和不在任何产品的
26、生产过程中,可变要素投入量和不变要素投入量之间存在一个最佳组合比例。在没变要素投入量之间存在一个最佳组合比例。在没变要素投入量之间存在一个最佳组合比例。在没变要素投入量之间存在一个最佳组合比例。在没有达到最佳组合比例之前,可变要素的投入量相有达到最佳组合比例之前,可变要素的投入量相有达到最佳组合比例之前,可变要素的投入量相有达到最佳组合比例之前,可变要素的投入量相对于不变要素来说还太少,因此增加可变要素投对于不变要素来说还太少,因此增加可变要素投对于不变要素来说还太少,因此增加可变要素投对于不变要素来说还太少,因此增加可变要素投入可以使生产要素的组合逐渐接近最佳组合比例。入可以使生产要素的组合
27、逐渐接近最佳组合比例。入可以使生产要素的组合逐渐接近最佳组合比例。入可以使生产要素的组合逐渐接近最佳组合比例。在这一过程中,边际产量是递增的。但是,从达在这一过程中,边际产量是递增的。但是,从达在这一过程中,边际产量是递增的。但是,从达在这一过程中,边际产量是递增的。但是,从达到最佳组合比例开始,继续增加可变要素,可变到最佳组合比例开始,继续增加可变要素,可变到最佳组合比例开始,继续增加可变要素,可变到最佳组合比例开始,继续增加可变要素,可变要素的投入量相对于不变要素来说就太多,生产要素的投入量相对于不变要素来说就太多,生产要素的投入量相对于不变要素来说就太多,生产要素的投入量相对于不变要素来
28、说就太多,生产要素的组合比例逐渐偏离最佳组合比例,边际产要素的组合比例逐渐偏离最佳组合比例,边际产要素的组合比例逐渐偏离最佳组合比例,边际产要素的组合比例逐渐偏离最佳组合比例,边际产量便呈现递减趋势。量便呈现递减趋势。量便呈现递减趋势。量便呈现递减趋势。28五、最佳投入阶段五、最佳投入阶段第一阶段(图中第一阶段(图中第一阶段(图中第一阶段(图中 区域),区域),区域),区域),劳动的总产量、平均产量是增加的,这说明在这一阶段,相对于不变的资本来说,劳动量缺乏,所以劳动量的增加可以使资本得到充分利用,从而使总产量和平均产量增加。因此任何理性的生产者都不会在这一阶段停止生产,而是连续增加劳动要素的
29、投入量,并将生产扩大到第二阶段。第二阶段(图中第二阶段(图中第二阶段(图中第二阶段(图中区域),区域),区域),区域),劳动的平均产量开始下降,但边际产量仍然大于零,因此总产量仍一直在增加。在这一阶段的起点,平均产量最大;终点处,边际产量为零,总产量最大。29五、最佳投入阶段五、最佳投入阶段第三阶段(图中第三阶段(图中第三阶段(图中第三阶段(图中区域)区域)区域)区域),这时劳动的边际产量为负值,总产量开始绝对减少。这表明相对于不变的资本量而言,劳动量投入过多,因此生产无论如何不能进行到这一阶段。以上分析说明,任何理性的生产者既不会将生以上分析说明,任何理性的生产者既不会将生产停留在产停留在区
30、域,也不会在区域,也不会在区域进行生产,所以生区域进行生产,所以生产只能在产只能在区域进行,也就是说,劳动量投入的合区域进行,也就是说,劳动量投入的合理区域在理区域在区域。区域。但是,劳动量的投入究竟在但是,劳动量的投入究竟在但是,劳动量的投入究竟在但是,劳动量的投入究竟在区域的哪一个点区域的哪一个点区域的哪一个点区域的哪一个点上,才能使企业的利润最大呢?这要看生产要素的上,才能使企业的利润最大呢?这要看生产要素的上,才能使企业的利润最大呢?这要看生产要素的上,才能使企业的利润最大呢?这要看生产要素的价格。价格。价格。价格。30第三节第三节长期生产函数(一):多种生长期生产函数(一):多种生产
31、要素的最优组合产要素的最优组合在长期中,所有的生产要素投入量都是可变在长期中,所有的生产要素投入量都是可变的,而且,多种投入要素之间是往往是可以互相的,而且,多种投入要素之间是往往是可以互相替代的。因此,这就有一个最优组合问题。在成替代的。因此,这就有一个最优组合问题。在成本一定的条件下,投入要素之间怎样组合,才能本一定的条件下,投入要素之间怎样组合,才能使产量最大;或在产量一定的条件下,怎样组合,使产量最大;或在产量一定的条件下,怎样组合,才能使成本最低。这类问题就是多种投入要素最才能使成本最低。这类问题就是多种投入要素最优组合问题。人们常常通过它选择最优技术。优组合问题。人们常常通过它选择
32、最优技术。如前所述,我们以两种生产要素的生产函数,如前所述,我们以两种生产要素的生产函数,来讨论多种要素投入组合与产出之间的关系。为来讨论多种要素投入组合与产出之间的关系。为了寻找投入要素的最优组合,需要利用等产量曲了寻找投入要素的最优组合,需要利用等产量曲线和等成本曲线。线和等成本曲线。31第三节第三节长期生产函数(一):多种长期生产函数(一):多种生产要素的最优组合生产要素的最优组合假定生产某种产品所使用的两种要素都是可以变动的,并且两种要素可一相互替代,则生产函数为Q=f(L,K)。生产中既可以多用劳动少用资本,也可以少用劳动多用资本。以追求最大利润为目标的厂商,总是力求选择最佳的或最合
33、适的生产要素组合,以最低成本生产某一既定产量。说明最佳要素组合,需用等产量曲线和等等产量曲线和等等产量曲线和等等产量曲线和等成本曲线成本曲线成本曲线成本曲线概念。32第三节第三节长期生产函数(一):多种生产长期生产函数(一):多种生产要素的最优组合要素的最优组合一、一、等产量曲线等产量曲线1.定义:等产量曲线是指在一定技术条件下,可以生产出同等产量的两种要素有效组合点的轨迹。如表:k 组合方式 L数量 K数量 X的产量ABCDE3579111510631200200200200200QX=100QX=200QX=300ABCDELOL33第三节第三节长期生产函数(一):多种生长期生产函数(一)
34、:多种生产要素的最优组合产要素的最优组合 2.2.等产量曲线的特征等产量曲线的特征等产量曲线的特征等产量曲线的特征 与无差异曲线相似,等产量曲线具有如下特征:与无差异曲线相似,等产量曲线具有如下特征:与无差异曲线相似,等产量曲线具有如下特征:与无差异曲线相似,等产量曲线具有如下特征:第一,等产量曲线向右下方倾斜,其斜率为负值。这是因为,第一,等产量曲线向右下方倾斜,其斜率为负值。这是因为,保持产量不变,增加一种要素的投入量时,必须减少另一种要素保持产量不变,增加一种要素的投入量时,必须减少另一种要素的投入量。图等产量曲线组的投入量。图等产量曲线组第二,在同一平面图上,可以有无数条等产量曲线,位
35、置较第二,在同一平面图上,可以有无数条等产量曲线,位置较高的等产量曲线代表较高的。高的等产量曲线代表较高的。产量水平。如图所示。产量水平。如图所示。第三,同一平面图上的任意两条等产量线不能相交。因为在第三,同一平面图上的任意两条等产量线不能相交。因为在交点上两条等产量线代表了相同的产量水平,与第二个特征相矛交点上两条等产量线代表了相同的产量水平,与第二个特征相矛盾。盾。第四。等产量线是一条凸向原点的线。这是由边际技术替代第四。等产量线是一条凸向原点的线。这是由边际技术替代率递减规律所决定的。率递减规律所决定的。34二、边际技术替代率二、边际技术替代率二、边际技术替代率二、边际技术替代率等产量曲
36、线之所以凸向原点或等产量曲线之所以凸向原点或等产量曲线之所以凸向原点或等产量曲线之所以凸向原点或是斜率递减,需用生产要素的是斜率递减,需用生产要素的是斜率递减,需用生产要素的是斜率递减,需用生产要素的边际技术替代率加以说明。边际技术替代率加以说明。边际技术替代率加以说明。边际技术替代率加以说明。1)1)1)1)定义与公式定义与公式定义与公式定义与公式:边际技术替代率就是当产量水平不变时,两种投入相互替代的比率;或者说,为维持原有的产量水平不变,每增加一单位X要素的使用而必须放弃的Y要素的数量。用公式表示就是:MRTSXY=Y/X2)2)生产要素的边际技术替代生产要素的边际技术替代生产要素的边际
37、技术替代生产要素的边际技术替代率也就是等产量曲线的斜率。率也就是等产量曲线的斜率。率也就是等产量曲线的斜率。率也就是等产量曲线的斜率。3)3)劳动对资本的边际技术替代率也等于劳动对资本的边际技术替代率也等于劳动对资本的边际技术替代率也等于劳动对资本的边际技术替代率也等于劳动的边际产量与资本的边际产量之比:劳动的边际产量与资本的边际产量之比:劳动的边际产量与资本的边际产量之比:劳动的边际产量与资本的边际产量之比:MRTSLK=K/L=MPL/MPK可说明如下:因 QK=MPKK同理 QL=MPLL为使总产量不变,应是QK=QL即因减少Y而减少的QY与因增加X而增加的QX应相抵消,二者方向相反,因
38、此得出:MPKK=MPLL 移项得:MRTSLK=K/L=-MPL/MPK 4)4)4)4)边际技术替代率递减规律。边际技术替代率递减规律。边际技术替代率递减规律。边际技术替代率递减规律。在产量或其它条件不变的情况下,如果不断增加一种要素以替代另一生产要素,那么,一单位该生产要素所能替代的另一种生产要素的数量将不断减少。实际上这是由于收益递减规律作用的结果。上例中MRTSXY分别为:A-B,2.5;B-C,2;C-D,1.5;D-E,1。35三、射线、脊线和生产的经济区三、射线、脊线和生产的经济区三、射线、脊线和生产的经济区三、射线、脊线和生产的经济区射线具有固定投入比例的等产量线资本劳动OQ
39、=50Q=100Q=150ABC图中OA、OB为脊线;脊线以内等产量曲线斜率为负的区间即是生产的经济区,这时两种要素可替代,能找到比脊线以外更有效率或更便宜的组合例:劳动固定为L1、资本为K3时,Q=50;减少资本为K2时,Q=100。反之,资本固定为K1、劳动为L3时,Q=50;减少劳动为L2时,Q=100。KLOQ=50Q=100Q=150ABK2K1K3L2L1L3K边际产量为负L边际产量为负36四、等成本曲线四、等成本曲线定义:等成本曲线是指一定数量的总成本所能购买的两种生产要素最大组合点的轨迹。例:假定某厂商有总成本支出R=100每单位劳动的价格PL=10元;每单位资本的价格PK=2
40、0元,则可能购买的商品组合如下表:L要素数量 K要素数量 总支出R0246810543210100100100100100100公式:公式:公式:公式:R=PR=PKKK+PK+PL LL L54321KL246810100=20K+10L斜率=OA/OB=R/PKR/PL=R/PKPL/R=PL/PKOBACD等成本曲线的移动:劳动要素价格变动KLABB1B2O要素价格不变等成本曲线平行移动80=20K+10L37五、生产要素的最佳组合五、生产要素的最佳组合定义:定义:定义:定义:最佳要素组合是指为生产一定量产品所需的各种要素组合中,总成本最低的那种组合;或是使花费既定数量的总成本所生产的产
41、量为最大的那种组合。最佳组合的原则:就是在成本既定前提下,使得所购买的各种生产要素的边际产量与价格之比都相等。若成本为一定,可得方程组:限制条件:实现条件:MRTSLK=-K/L=MPL/MPK=PL/PKOKLQ=50Q=150Q=100EAB若产量既定,求成本最低,可得方程组:MPL/PL=MPK/PK;Q=f(L,K)KLOQ=100EAB38例题:已知生产函数为如果成本支出单位货币,所能生产的最大产量是多少?如果要生产的产量是495,最小成本是多少?(1)由得偏导数已知成本方程和价格比为因此可得方程组解得代入生产函数得Q=49539(2)如果已知生产函数是可得方组解得已知X=6Y代入得
42、根据最小成本原则把方程组的解代入成本方程可得即最小成本。R=13240六、生产要素最优组合原则的应用六、生产要素最优组合原则的应用生产要素最优组合原则意味着,当生产要素的价格比例发生变动时,企业会更多的使用比以前便宜的生产要素,少使用比以前贵的生产要素,以达到既定产量下成本最小的目的。如图所示。假定劳动价格下如图所示。假定劳动价格下降了,或资本的价格上升了,就会使投入要素的价格降了,或资本的价格上升了,就会使投入要素的价格比例发生变化,从而使等成本曲线斜率的绝对值变小。比例发生变化,从而使等成本曲线斜率的绝对值变小。以上道理可以用来解释,为什么如果从纯经济学以上道理可以用来解释,为什么如果从纯
43、经济学的角度考虑,对发达国家来说是适宜的先进技术,对的角度考虑,对发达国家来说是适宜的先进技术,对发展中国家不一定适宜。以上道理也可以用来解释为发展中国家不一定适宜。以上道理也可以用来解释为什么有些国家的农业主要采用广种薄收的耕作方式,什么有些国家的农业主要采用广种薄收的耕作方式,而另一些国家则采取精耕细作的耕作方式。而另一些国家则采取精耕细作的耕作方式。41六、生产要素最优组合原则的应用OLK图 生产要素的替代KAKLLQKLAKBLBAB42第四节第四节长期生产函数(二):规模长期生产函数(二):规模报酬报酬规模报酬分析研究的是企业的生产规模变动与它所引起的产量变动之间的关系。企业只有在长
44、期内才能调整全部生产要素,进而变动生产规模。所以,规模报酬分析属于长期生产所以,规模报酬分析属于长期生产函数问题。函数问题。为了分析的简便,我们假定企业在生产中投入的全部生产要素按相同的比例按相同的比例发生变动。研究生产要素的同比例变动,就是要确定多大的生产规模是最适宜的。43第四节第四节长期生产函数(二):规模长期生产函数(二):规模报酬报酬一、规模报酬变动的三种情形一、规模报酬变动的三种情形一、规模报酬变动的三种情形一、规模报酬变动的三种情形规模报酬变动是指在其它条件不变的情况下,企业内部各种生产要素按相同比例变动所引起的产出变动。我们根据投入变动与产出变动之间的关系将长期生产函数划分为规
45、模报酬规模报酬递增、规模报酬不变和规模报酬递减递增、规模报酬不变和规模报酬递减三种情形三种情形。1.规模报酬递增规模报酬递增如果产量增加的比例大于各种投入要素增加的比例,则存在规模报酬递增。例如,当全例如,当全部生产要素投入量增加一倍,产量的增加超过部生产要素投入量增加一倍,产量的增加超过一倍。一倍。44第四节第四节长期生产函数(二):规模长期生产函数(二):规模报酬报酬 规模报酬递增的原因可从三个方面分析:规模报酬递增的原因可从三个方面分析:规模报酬递增的原因可从三个方面分析:规模报酬递增的原因可从三个方面分析:第一,生产要素的使用效率充分发挥。第一,生产要素的使用效率充分发挥。第一,生产要
46、素的使用效率充分发挥。第一,生产要素的使用效率充分发挥。许多要素许多要素必须达到一定产量水平时才能更有效率。这表明原有必须达到一定产量水平时才能更有效率。这表明原有生产规模中含有扩大生产的潜力。生产规模中含有扩大生产的潜力。第二,生产专业化程度提高。第二,生产专业化程度提高。第二,生产专业化程度提高。第二,生产专业化程度提高。当生产要素同时增当生产要素同时增加的时候,可以提高生产要素的专业化程度。这有助加的时候,可以提高生产要素的专业化程度。这有助于提高工人的生产技术(把复杂的活动变为简单的活于提高工人的生产技术(把复杂的活动变为简单的活动,工人更易于掌握),从而提高劳动生产率。动,工人更易于
47、掌握),从而提高劳动生产率。第三,管理更加合理。第三,管理更加合理。第三,管理更加合理。第三,管理更加合理。生产规模扩大时,容易实生产规模扩大时,容易实行现代化管理。现代化管理,会造成一种新的生产力。行现代化管理。现代化管理,会造成一种新的生产力。合理的、先进的管理可以更进一步充分发挥各要素的合理的、先进的管理可以更进一步充分发挥各要素的组合功能,带来更大的效率和效益。组合功能,带来更大的效率和效益。45第四节第四节长期生产函数(二):规模长期生产函数(二):规模报酬报酬2.2.规模报酬不变规模报酬不变规模报酬不变规模报酬不变如果产量增加的比例等于各种投入要素增加的比例,则存在规模报酬不变。例
48、如,当全例如,当全部生产要素投入量增加一倍,产量也增加一倍部生产要素投入量增加一倍,产量也增加一倍的情况。的情况。通常,当规模扩大到生产要素的效率和生通常,当规模扩大到生产要素的效率和生产专业化的好处得以充分发挥,劳动生产率得产专业化的好处得以充分发挥,劳动生产率得到充分提高的时候,规模报酬达到不变的阶段。到充分提高的时候,规模报酬达到不变的阶段。46第四节第四节长期生产函数(二):规模长期生产函数(二):规模报酬报酬 3.3.规模报酬递减规模报酬递减规模报酬递减规模报酬递减如果产量增加的比例小于各种投入要素增加的比如果产量增加的比例小于各种投入要素增加的比例,则存在规模报酬递减的情况。例,则
49、存在规模报酬递减的情况。例如,当全部生产例如,当全部生产要素的投入量增加一倍,产量增加了要素的投入量增加一倍,产量增加了0.5倍的情况。倍的情况。规模报酬递减的主要原因是由于规模报酬递减的主要原因是由于:企业生产规模过大所产生的管理上的困难。比如企业生产规模过大所产生的管理上的困难。比如庞大的管理机构和复杂的管理层级容易滋生官僚主义,庞大的管理机构和复杂的管理层级容易滋生官僚主义,企业不易获取决策信息,缺乏灵活性,难以适应千变企业不易获取决策信息,缺乏灵活性,难以适应千变万化的市场等等。万化的市场等等。当生产处于规模报酬递增阶段时,随着生产规模的当生产处于规模报酬递增阶段时,随着生产规模的扩大
50、,产品平均成本会下降,这可称为规模经济。反扩大,产品平均成本会下降,这可称为规模经济。反之,则称为规模不经济。之,则称为规模不经济。47第四节第四节长期生产函数(二):规模长期生产函数(二):规模报酬报酬二、适度规模二、适度规模以上分析说明,企业的生产规模不能过小,也不能过大。即要实现适度规模。适度规模就是使生产要素投入量的增加,即生产规模的扩大正好使报酬递增达到最大。当报酬递增达到最大时就不再增加生产要素的投入,并使这一生产规模维持下去。48第四节第四节长期生产函数(二):规模长期生产函数(二):规模报酬报酬在确定适度规模时应该考虑在确定适度规模时应该考虑在确定适度规模时应该考虑在确定适度规