181勾股定理(1)上课课件.ppt

上传人:s****8 文档编号:69841763 上传时间:2023-01-09 格式:PPT 页数:35 大小:2.12MB
返回 下载 相关 举报
181勾股定理(1)上课课件.ppt_第1页
第1页 / 共35页
181勾股定理(1)上课课件.ppt_第2页
第2页 / 共35页
点击查看更多>>
资源描述

《181勾股定理(1)上课课件.ppt》由会员分享,可在线阅读,更多相关《181勾股定理(1)上课课件.ppt(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 读一读 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为周髀算经作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图1-1图1-2hdzh 在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,径隅五。”即:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。故称之为“勾股勾股定理定理”或“商高定理商高定理

2、”活动一:活动一:勾股定理勾股定理勾勾股股弦弦 在西方,希腊数学家欧几里德(在西方,希腊数学家欧几里德(EuclidEuclid,公元前三百年左右)在编著公元前三百年左右)在编著几何原本几何原本时,时,认为这个定理是毕达哥达斯最早发现的,所以认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为他就把这个定理称为“毕达哥拉斯定理毕达哥拉斯定理”,以,以后就流传开了。后就流传开了。毕达哥拉斯(毕达哥拉斯(PythagorasPythagoras)是古希腊数学)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五家,他是公元前五世纪的人,比商高晚出生五百多年。百多年。相传,毕达哥拉斯学派找到了

3、勾股定理的相传,毕达哥拉斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,证明后,欣喜若狂,杀了一百头牛祭神,由此,又有又有“百牛定理百牛定理”之称。之称。毕达哥拉斯毕达哥拉斯(公元前公元前572-前前492年年),古希腊著名的哲学家、古希腊著名的哲学家、数学家、天文学家。数学家、天文学家。相传在相传在2500年前,年前,毕达哥拉斯毕达哥拉斯有有一次在朋友家做客时,发现朋友家用砖一次在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的铺成的地面中反映了直角三角形三边的某种数量关系,我们一起来观察图中的某种数量关系,我们一起来观察图中的地面,看看能发现什么。地面,看看能

4、发现什么。A、B、C的面积有什么关系?的面积有什么关系?直角三角形三边有什么关系?直角三角形三边有什么关系?ABC活动二:活动二:ABC图11(1)观察图)观察图11:正方形正方形A中含有中含有 个小个小方格,即方格,即A的面积是的面积是 个单位面积;个单位面积;正方形正方形B中含有中含有 个小个小方格,即方格,即B的面积是的面积是 个单位面积;个单位面积;正方形正方形C中含有中含有 个小个小方格,即方格,即C的面积是的面积是 个单位面积;个单位面积;99991818A的面积的面积+B的面积的面积=C的面积的面积图12ABC(2)观察图)观察图12:正方形正方形A中含有中含有 个小个小方格,即

5、方格,即A的面积是的面积是 个单位面积;个单位面积;正方形正方形B中含有中含有 个小个小方格,即方格,即B的面积是的面积是 个单位面积;个单位面积;正方形正方形C中含有中含有 个小个小方格,即方格,即C的面积是的面积是 个单位面积;个单位面积;444488A的面积的面积+B的面积的面积=C的面积的面积 因此可知等腰直角三角形有这因此可知等腰直角三角形有这样的性质:样的性质:对于任意直角三角形都有这样的性质吗对于任意直角三角形都有这样的性质吗?两直边的平方和等于斜边的平方两直边的平方和等于斜边的平方看下图看下图ABCA的面的面积积(单位单位长度长度)B的面的面积积(单位单位长度长度)C的面的面积

6、积(单位单位长度长度)图图1图图2A、B、C面积面积关系关系直角三直角三角形三角形三边关系边关系图图1图图2491392534sA+sB=sC 两直角边的平方和两直角边的平方和等于斜边的平方等于斜边的平方ABC问题:问题:你会用四个全等的直角三角形拼成哪些图形?你会用四个全等的直角三角形拼成哪些图形?abcabcabcabc活动三:勾股定理的证明活动三:勾股定理的证明勾股定理的证明方法很多,这里重点的勾股定理的证明方法很多,这里重点的介绍介绍面积证法面积证法。勾股定理的证法(一)勾股定理的证法(一)a a2 2+b+b2 2=c=c2 2(a+b)(a+b)2 2=c=c2 2+4+4.aba

7、b勾股定理的证法(二)勾股定理的证法(二)4 ab=4 ab=c2(ba)2a2+b2=c2Ccabcabcabcab(a+b)2=c2+4ab/2a2+2ab+b2=c2+2aba2+b2=c2大正方形的面积可以表示为大正方形的面积可以表示为 ;也可以表示为也可以表示为(a+b)2c2+4ab/2(2)美国总统证法:)美国总统证法:bcabcaABCDa+b=c 勾股定理(勾股定理(gou-gu theorem)gou-gu theorem)如果直角三角形两直角边分别为如果直角三角形两直角边分别为a、b,斜斜边为边为c,那么,那么即即 直角三角形两直角边的平方和等直角三角形两直角边的平方和等

8、于斜边的平方。于斜边的平方。abc勾勾股股弦弦在西方又称毕达在西方又称毕达哥拉斯定理!哥拉斯定理!定理:定理:经过证明被确认为正确的命题叫做经过证明被确认为正确的命题叫做定理。定理。勾股定理:勾股定理:如果直角三角形的两直角边长如果直角三角形的两直角边长分别为、,斜边为,那么分别为、,斜边为,那么2+b2=c2。如图,在如图,在RtABC中,中,C=90,则,则 2+b2=c2常用的勾股数:常用的勾股数:3,4,5;5,12,13;6,8,10;7,24,25。(2)使用前提是直角三角形使用前提是直角三角形(3)分清直角边、斜边分清直角边、斜边注意变式注意变式:(1)a=c b a=c b 等

9、等.22222勾勾股股弦弦ACBab c勾股弦股弦222返回勾股定理的各种表达式勾股定理的各种表达式:在在RTABC中,中,C=90,A、B、C的对边分别为的对边分别为a、b、c,则则:c2=a2+b2a2=c2-b2b2=c2-a2c2=a2+b2a2=c2-b2b2=c2-a2c=a=b=1.判断题判断题:l(1).如果三角形的三边长分别为a,b,c,则l()l(2).如果直角三角形的三边长分别为a,b,c,l()l则则当当 堂堂 达达 标标5.已知:如图所示C90,a=6,ab34,求b和c2.求出下列直角三角形中未知边的长度求出下列直角三角形中未知边的长度68x5x13解:(解:(1)

10、由勾股定理得:由勾股定理得:x2=36+64x2=100 x2=62+82x=10 x2+52=132 x2=132-52x2=169-25x2=144x=12(2)由勾股定理得:由勾股定理得:当当 堂堂 达达 标标1RtABC的两条直角边a=3,b=4,则斜边c .2已知:如图18.1-4 在ABC中,ACB=90,以ABC的各边为在ABC外作三个正方形分别表示这三个正方形的面积,则的边长为()A.6 B.36 C.64 D.83 若直角三角形两直角边分别为12,16,则此直角三角形的周长为()A.28 B.36 C.32 D.484 直角三角形的三边长分别为3,4,x,则x2等于()A.5

11、 B.25 C.7 D.25或7第2题图例例1、已知、已知ABC中中,C=Rt,BC=a,AC=b,AB=c(1)已知已知:a=1,b=2,求求 c;(2)已知已知:a=15,c=17,求求 b;已知已知:a=,b=,求求 c;(1)(4)已知已知:c=34,a:b=8:15,求求 a,b.学以致用学以致用1)在直角三角形中,两条直角边分别为a,b,斜边为c,则c2=_a2+b22)在RTABC中C=90,若若a=4,b=3,则则c=_ 若若c=13,b=5,则则a=_ 若若 c=17,a=8,则则b=_51215一 填空题:勾股定理是几何中最重要的定理之勾股定理是几何中最重要的定理之一,它揭

12、示了直角三角形三边之间的数一,它揭示了直角三角形三边之间的数量关系量关系.勾股定理:直角三角形两直角边a、b平方和,等于斜边c平方。a2+b2=c2勾股定理的主要作用是勾股定理的主要作用是 在直角三角形在直角三角形中中,已知任意两边求第三边的长。已知任意两边求第三边的长。一个长方形的长是宽的2 倍,其对角线的长是5,那么它的宽是()A B C D 二 选择题:如果直角三角形的一个锐角为30度,斜边长是2 ,那么直角三角形的其它两边长是()A 1,B 1,3 C 1,D 1 ,5 如图,在RTABC中,中,C=90,B=45,AC=1,则则AB=()A 2,B 1,C ,D ACBABC(4)、

13、放学以后,小红和小颖从学校分手,分别沿着东方向和南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖用20分钟到家,小红和小颖家的距离为 ()A、600米 B、800米 C、1000米 D、不能确定(5)、直角三角形两直角边分别为5厘米、12厘米,那么斜边上的高是 ()A、6厘米 B、8厘米 C、80/13厘米;D、60/13厘米;CD探索勾股定理探索勾股定理1、想一想、想一想我们有我们有:三、解决问题:三、解决问题:46b=58a=4658cc2=a2+b2 =462+582 =5480 而而742=5476由勾股定理得:由勾股定理得:在误差范围内在误差范围内DABC2

14、 2、蚂蚁沿图中的折线从、蚂蚁沿图中的折线从A A点爬到点爬到D D点,一共爬点,一共爬了多少厘米?(小方格的边长为了多少厘米?(小方格的边长为1 1厘米)厘米)GFE某某楼楼房房三三楼楼失失火火,消消防防队队员员赶赶来来救救火火,了了解解到到每每层层楼楼高高2 2米米,消消防防队队员员取取来来7 7米米长长的的云云梯梯,如如果果梯梯子子的的底底部部离离墙墙基基的的距距离离是是2.52.5米,请问消防队能否进入三楼灭火米,请问消防队能否进入三楼灭火?应用举例解:如图,在RtABC中,C=90,AC=6米,BC=2.5米,则AB=6.5因为7米大于6.5米所以消防队能进入三楼灭火消防队能进入三楼灭火11美丽的勾股树作作 业业 布布 置置必做题:教材69页习题18.1第1、2两题,选做题:教材69页习题18.1第7题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁