高中数学立体几何向量法归纳.ppt

上传人:wuy****n92 文档编号:69817873 上传时间:2023-01-09 格式:PPT 页数:44 大小:1.35MB
返回 下载 相关 举报
高中数学立体几何向量法归纳.ppt_第1页
第1页 / 共44页
高中数学立体几何向量法归纳.ppt_第2页
第2页 / 共44页
点击查看更多>>
资源描述

《高中数学立体几何向量法归纳.ppt》由会员分享,可在线阅读,更多相关《高中数学立体几何向量法归纳.ppt(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、向量方法部分向量方法部分学海无涯学海无涯空间向量空间向量的运算空间向量基本定理空间向量的坐标运算加减和数乘运算共线向量共面向量空间向量的数量积知识结构夹角和距离平行和垂直学海无涯学海无涯1、空间直角坐标系、空间直角坐标系以单位正方体以单位正方体 的顶点的顶点O为原点,分别以射线为原点,分别以射线OA,OC,的方向的方向 为正方为正方向,以线段向,以线段OA,OC,的的长为单位长,建立三条数轴:长为单位长,建立三条数轴:x轴轴,y轴轴,z轴轴,这时我们建立了一这时我们建立了一个个空间直角坐标系空间直角坐标系CDBACOAByzxO为坐标原点,为坐标原点,x轴轴,y轴轴,z轴叫坐标轴,通过每两个坐

2、轴叫坐标轴,通过每两个坐标轴的平面叫坐标平面标轴的平面叫坐标平面一、基本概念学海无涯学海无涯右手直角坐标系右手直角坐标系空间直角坐标系空间直角坐标系Oxyz横轴横轴纵轴纵轴竖轴竖轴学海无涯学海无涯2、空间直角坐标系中点的坐标、空间直角坐标系中点的坐标有序实数组(有序实数组(x,y,z)叫做点)叫做点M在此在此空间空间直角坐标系中的坐标,直角坐标系中的坐标,记作记作M(x,y,z)其中其中x叫做点叫做点M的横坐标,的横坐标,y叫做点叫做点M的的纵坐标纵坐标,z叫做点叫做点M的竖坐标的竖坐标点点M(X,Y,Z)学海无涯学海无涯 如果表示向量如果表示向量n的有向线段所在的直线垂的有向线段所在的直线垂

3、直于平面直于平面,称这个向量垂直于平面称这个向量垂直于平面,记作记作n,这时向量这时向量n叫做平面叫做平面的法向量的法向量.4、平面的法向量、平面的法向量n3、直线的方向向量、直线的方向向量学海无涯学海无涯1、假设平面法向量的坐标为、假设平面法向量的坐标为n=(x,y,z).2、根据、根据na=0且且nb=0可列出方程组可列出方程组3、取某一个变量为常数、取某一个变量为常数(当然取得越简单越好当然取得越简单越好),便得到平面法向量便得到平面法向量n的坐标的坐标.anb5、平面法向量的求法、平面法向量的求法设设a=(x1,y1,z1)、b=(x2,y2,z2)是平面是平面内的两个不共线内的两个不

4、共线的非零向量的非零向量,由直线与平面垂直的判定定理知由直线与平面垂直的判定定理知,若若n a且且n b,则则n.换句话说换句话说,若若na=0且且nb=0,则则n.可按如下步骤求出平面的法向量的坐标可按如下步骤求出平面的法向量的坐标学海无涯学海无涯例、已知例、已知A(2,1,1),B(-2,7,0),C(6,4,-1).A(2,1,1),B(-2,7,0),C(6,4,-1).求平求平面面ABCABC的法向量的法向量解:解:平面平面ABCABC的法向量为的法向量为:学海无涯学海无涯 例、在棱长为例、在棱长为2的正方体的正方体ABCD-A1B1C1D1中中,O是面是面AC的中心的中心,求面求面

5、OA1D1的法向量的法向量.解:以解:以A为原点建立空间直角坐标系为原点建立空间直角坐标系O-xyz(如图),(如图),则则O(1,1,0),),A1(0,0,2),),D1(0,2,2),),设平面设平面OA1D1的法向量的法向量为的法向量的法向量为n=(x,y,z),由由 =(-1,-1,2),),=(-1,1,2)得)得 解得解得取取z=1得平面得平面OA1D1的法向的法向量的坐标量的坐标n=(2,0,1)A A BOzyA1C1B1AxCDD1学海无涯学海无涯5、两法向量所成的角与二面角的关系、两法向量所成的角与二面角的关系设设n1、n2分别是二面角两个半平面分别是二面角两个半平面、的

6、法向量,的法向量,由几何知识可知,二面角由几何知识可知,二面角-L-的大小与法向量的大小与法向量n1、n2夹角相等或互补,于是求二面角的大小可转化夹角相等或互补,于是求二面角的大小可转化为求两个平面法向量的夹角为求两个平面法向量的夹角.学海无涯学海无涯二、基本公式:1 1、两点间的距离公式(线段的长度)、两点间的距离公式(线段的长度)2 2、向量的长度公式(向量的模)、向量的长度公式(向量的模)学海无涯学海无涯3 3、向量的坐标运算公式、向量的坐标运算公式学海无涯学海无涯4 4、两个向量平行的条件、两个向量平行的条件5 5、两个向量垂直的条件、两个向量垂直的条件或学海无涯学海无涯7 7、重心坐

7、标公式、重心坐标公式6 6、中点坐标公式、中点坐标公式学海无涯学海无涯9 9、直线与平面、直线与平面所成角公式所成角公式(为为 的法向量的法向量)8 8、直线与直线所成角公式、直线与直线所成角公式 1010、平面与平面所成角公式、平面与平面所成角公式(为二面角两个半平面的法向量)为二面角两个半平面的法向量)学海无涯学海无涯1111、点到平面、点到平面的距离公式的距离公式(PM为平面为平面 的斜线的斜线,为平面为平面 的法向量)的法向量)1212、异面直线的、异面直线的距离公式距离公式(A,B为异面直线上两点为异面直线上两点,为公垂线的方向向量)为公垂线的方向向量)学海无涯学海无涯利利用用向向量

8、量求求角角直线与直线所成的角直线与直线所成的角直线与平面所成的角直线与平面所成的角平面与平面所成的角(二面角)平面与平面所成的角(二面角)利利用用向向量量求求距距离离点到直线的距离点到直线的距离点到平面的距离点到平面的距离直线到平面的距离直线到平面的距离平行到平面的距离平行到平面的距离直线到直线的距离直线到直线的距离三、基本应用学海无涯学海无涯利利用用向向量量证证平平行行利利用用向向量量证证垂垂直直直线与直线垂直直线与直线垂直直线与平面垂直直线与平面垂直平面与平面垂直平面与平面垂直直线与直线平行直线与直线平行直线与平面平行直线与平面平行平面与平面平行平面与平面平行学海无涯学海无涯四、基本方法1

9、 1、平行问题、平行问题学海无涯学海无涯、垂直问题、垂直问题学海无涯学海无涯、角度问题、角度问题学海无涯学海无涯、距离问题、距离问题()点到点的距离、点到平面的距离、直线()点到点的距离、点到平面的距离、直线到直线的距离直接用公式求解。到直线的距离直接用公式求解。()点到直线的距离、直线到平面的距离、平()点到直线的距离、直线到平面的距离、平面到平面的距离转化为点到平面的距离求面到平面的距离转化为点到平面的距离求解。解。学海无涯学海无涯例:题型一:线线角题型一:线线角五、典型例题学海无涯学海无涯所以:题型一:线线角题型一:线线角解:以点C 为坐标原点建立空间直角坐标系 如图所示,不妨设 则 C

10、|所以所以 与与 所成角的余弦值为所成角的余弦值为学海无涯学海无涯题型二:线线垂直题型二:线线垂直学海无涯学海无涯ABDCA1B1D1C1例例.在正方体在正方体ACAC1 1中,中,E E为为DDDD1 1的中点,求证:的中点,求证:DBDB1 1/面面A A1 1C C1 1E EEF题型四:线面平行题型四:线面平行xyz即即学海无涯学海无涯FEXYZ题型五:线面垂直题型五:线面垂直或先求平面BDE的法向量 再证明学海无涯学海无涯题型六:面面角题型六:面面角设平面xyz学海无涯学海无涯XYZ例:在正方体例:在正方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,求证:面

11、中,求证:面A A1 1BDBD面面CBCB1 1D D1 1题型七:面面平行题型七:面面平行或先求两平面的法向量 再证明学海无涯学海无涯例、在正方体例、在正方体ACAC1 1中,中,E E、F F分别是分别是BBBB1 1、CDCD的中点,的中点,求证:面求证:面AEDAED面面A A1 1FDFD1 1ABCDA1B1C1D1EFXYZ题型八:面面垂直题型八:面面垂直或证明两平面的法向量垂直或证明两平面的法向量垂直学海无涯学海无涯练习练习学海无涯学海无涯练习练习学海无涯学海无涯练习练习学海无涯学海无涯练习练习学海无涯学海无涯练习练习学海无涯学海无涯题型九:异面直线的距离题型九:异面直线的距

12、离zxyABCC1即即取x=1,z则y=-1,z=1,所以EA1B1学海无涯学海无涯ABCDEFGXYZ题型十:点到平面的距离题型十:点到平面的距离学海无涯学海无涯练习练习学海无涯学海无涯练习练习学海无涯学海无涯练习练习学海无涯学海无涯练习练习学海无涯学海无涯 已知正方形已知正方形ABCD的边长为的边长为1,PD 平面平面ABCD,且,且PD=1,E、F分别为分别为AB、BC的中点。的中点。求证:求证:PE AF;求点求点D到平面到平面PEF的距离;的距离;求直线求直线AC到平面到平面PEF的距离;的距离;求直线求直线PA与与EF的距离;的距离;求直线求直线PA与与EF所成的角;所成的角;求求PA与平面与平面PEF所成的角;所成的角;求二面角求二面角A-PE-F的大小。的大小。ABCDEFPxyz练习练习

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁