线性时滞反馈引起的周期性振动共振分析.pdf

上传人:asd****56 文档编号:69681735 上传时间:2023-01-07 格式:PDF 页数:8 大小:887.17KB
返回 下载 相关 举报
线性时滞反馈引起的周期性振动共振分析.pdf_第1页
第1页 / 共8页
线性时滞反馈引起的周期性振动共振分析.pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《线性时滞反馈引起的周期性振动共振分析.pdf》由会员分享,可在线阅读,更多相关《线性时滞反馈引起的周期性振动共振分析.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、?n?Acta Phys.Sin.Vol.61,No.1(2012)010505?555?555?*?u 4kR(Hfi?U?,Hfi210016)(2010 c 7?16 F?;2011 c 4?15 F?Uv)?p“&?f$“&?-ye?5?LZVX?Duffing?fX?y?K?.)?(J?L,X?$“&?A?O?Cz?y?5X,?O?p“&?$“&?.?(J?L,?3;?y?Duffing X?,LN!?u?y?.?=?k?/?,?OrX?f$“&?A.?c:VX?,Duffing X?,?5?,?PACS:05.45.a,02.30.Ks,05.90.+m1?Cc5,?“&?-ye?

2、5X?AflK?0,&?f 1,&?“,=?&?O?$“f&?p“&?.3?(=0)?,?;?n?4,LN!?p“&?,X?A3“?y?y?,$“f&?3X?Or.?,Yang?Liu uy15,?&?C?,LN!?k?/?,l?$“f&?X?A.X?$“&?A?O5?,?Q=Q2s+Q2cf,(2)?Qs?QcO?X?3“?u?u Fourier?,Qs=2mTmT0 x(t)sin(t)dt,Qc=2mTmT0 x(t)cos(t)dt,(3)T=2/,m?.(2)“L?f$“&?LX?,?f?A3“?.2.1?ppp“&?-yyy?AAA?555KKK?k,?p“&?,=f=0?/,d?

3、(1)C?ddtx(t)=x3(t)+x(t )+F cos(t).(4)X?A?d?-&?,du?5?K?,b?4?)?x(t)=n=1Ansin(nt)+Bncos(nt),(5)?x(t)=n=1Cnsin(nt+n),(6)?Cn=A2n+B2n,n=atan(BnAn).(7)r?(5)?(4),?u An,Bn?X?|,?u A1,B1?|?3A31+3A1B21 4A1cos()4B1sin()4B1=0,(8)3B31+3A21B1 4B1cos()+4A1sin()+4A1 4F=0.(9)?5?|?(J?flK,?(8)?(9)?J?A1?A2?N)?“,?Juy A1?B

4、1?),F,sin(),cos()?.?C1?AT,F,sin(),cos()?,=C1=F1F,sin(),cos(),(10)?F1 L?P.3?(10),NuyC1(+2/)=F1F,sin(+2/),cos(+2/)=C1(),(11)dd?X?3“?5Cz?,?T?up“&?,=2/.L?y,X?3“n(n=2,.,)?5Cz,?2/(n).d,X?p“&?A?,?2/.fl?,3X?(4)?,?“83?,3?“?,?A?4?f.2.2?$“&?-yyy?AAA?555KKK?&?uX?,=F 6=0,f 6=0?/.?B$?,?X?A?kXe/010505-2?n?Acta Phy

5、s.Sin.Vol.61,No.1(2012)010505“?Cq)79x(t)=y(t)+sin(t+)(12)?y(t)?m”?TL=2/?A?$“?C,L?,I?(?.?m”?TL=2/?u TH=2/,d3 0TH?mS,?r y(t),y(t)?f cos(t)?n.?(12)“?(1)“,t 3 0TH?mS?1,z?ddty(t)y(t )+y3(t)+32/2y(t)=f cos(t).(13)aqu 2.1.!?(4)?,?(13)?Cq)?y(t)=n=1ansin(nt)+ancos(nt),(14)?y(t)=n=1cnsin(nt+n),(15)?cn=a2n+b2n

6、,n=atan(bn/an).(16)?(14)?(13),?u an,bn?X?|,?u a1,b1?|?3a31+3a1b21 4a1cos()4b1sin()+6a124b1+4f=0,(17)3b31+3a21b1+4a1sin()4b1cos()+6b12+4a1=0.(18)?(17)?(18)?b1,b2?)u,f,sin(),cos()?,c1?u,f,sin(),cos()?,P?c1=f1,f,sin(),cos().(19)?1=+2/?,f1,f,sin(1),cos(1)=f1,f,sin(),cos().(20)?y?c1?k5,=X?A3“?m?k5,?2/.2.

7、3?(JJJ?(2)?“,?(1)?1?,?)?K?yX?$“&?A?O?k?5.?!?z 17?U?.4?Runge Kutta?,l?“?k1=x(n)3+x(n i/t)+f cos(nt)+F cos(nt),k2=x(n)+0.5k13+x(n i/t)+0.5k1+f cos(nt)+F cos(nt),k3=x(n)+0.5k23+x(n i/t)+0.5k2+f cos(nt)+F cos(nt),k4=x(n)+k33+x(n i/t)+k3+f cos(nt)+F cos(nt),x(n+1)=x(n)+16(k1+2k2+2k3+k4)t(21)(n=1,2,.,N,N=

8、tt,i=1,2,.,M,M=),?,t OL?m?.(21)“I?U?.4?Runge-Kutta?IO 4?Runge-Kutta?O?,?Bu?n,?z 18,19 L?!?Euler?1?(?.3?O?,?m=30.?“(2),X?p“&?A?O?R=R2s+R2c/F,(22)?Rs?RcO?X?3p“&?“?u?u Fourier?,Rs=2mTmT0 x(t)sin(t)dt,Rc=2mTmT0 x(t)cos(t)dt.(23)1?m(2/)S,X?$“&?A?O Q?m?X?.?X?Cz,Q y5Cz,?2/,?y?2.2.!)?(5.3z 15,du?,?uy5.3?Duf

9、fing?fX?K?V“&?-ye,O3?kV(V?)?(?)?Duffing?fX?5?,?d2dt2x(t)+ddtx(t)20 x(t )+x(t)3=f sin(t)+F sin(t),(24)d2dt2x(t)+ddtx(t)+20 x(t )+x(t)3=f sin(t)+F sin(t),(25)?0,ZX,?,0,?,?&?k?1 2!?&?A5.?!(2)“X?(22)?X?(23)?1?,?y?K?.3?L,?0=1,=30/2,=10,f=0.1,=0.1.?,=0?,3(a)?3(b)O?X?(22)?X?(23)$“&?A?O Q?p“&?F?m?X.3(a)LV;D

10、uffing X?3;?y?,?,?I F?.u =3,?F 1.3?,Q?F?O?/O?1.3 F 1.75?F?O?Q?N?.3(b)L,3?!?,LN!F?U?u?y?,Q?F?O?N?.OAu 3(a)?u)?u)?/,4?X?(22)?A?mS?.?u)?,X?3?(?,?y?m?B?,$“&?U?.?u)?,X?y?m?B?,$“&?k?/?.010505-4?n?Acta Phys.Sin.Vol.61,No.1(2012)010505 3?(=0)?,(a)V Duffing X?;?y?;(b)?Duffing X?y?y?4?(=0)?,(a)V Duffing X?;?y

11、?;(b)?Duffing X?y?y?5V Duffing X?Cz?X?$“&?A?O?5Cz =3 6V Duffing X?,F=1.0,=3?,(a)?u)?mS?,=0;(b)?u?mS?,=60.7010505-5?n?Acta Phys.Sin.Vol.61,No.1(2012)010505 7?Duffing X?Cz?X?$“&?A?O?5Cz =3 8?Duffing X?,F=1.0,=3?,(a)?u)?mS?,=0;(b)?u?mS?,=28.6?V“&?C?,5?$“&?A?O Q?K?.5L?X?O?,X?$“&?A?O?y?5,?O?&?.5(a)?3(a)?

12、uy,N!?U?X?r?.6?X?(22)?mS?K?.3 6(b),?u?,X?X?u)?mS?4?q,?l?m?q5.3(b)fiL,3?Duffing X?(23)?3;?y?.3 7,?C,LN!?,3X?(23)y?5?,?N?|?5,?3?3?X?pu?y?,?f$“&?.8?X?(23)?mS?K?,uy=3?X?,?u)?X?3/“?yaquVX?55?“B?”.k Duffing X?Cz?5?)?y,?1 2!?y?,?!?2K.4 o(?O?p“&?f$“&?-ye?LZV;X?Duffing X?y?.?3?5?,n?(J?LX?$“&?A?O?Cz?y?5,?O?u?

13、p“&?$“&?.u?3;?Duffing X?,LN!?,?pu?y?.|N!?=?k?/?5X?y?,?OrX?f$“&?A.?(J3?+?&?9?f$“&?u?flKJ?g.8c,k?3?“&?-y?5X?A?u?,?/.k,?/“?5?,u?5?010505-6?n?Acta Phys.Sin.Vol.61,No.1(2012)010505K?E,?,?3?,3?/q?X?k?u?.?g,?X?/,?LZ?/?1?.ujZ?/,X?AK?U?yb,u?,?y?.?,?2?3?aX?,X?mX?,p?X?,$?E,?X?K?k?u?.u?n,?X?|?5Jp&?3?fS?D?,$?k?U

14、?)kX?“&?A?JK.1Knoblauch A,Palm G 2005 BioSystems 79 832Su D,Chiu M,Chen C 1996 J.Soc.Precis.Eng.18 1613Maksimov A 1997 Ultrasonics 35 794Landa P S,McClintock P V E 2000 J.Phys.A 33 L4335Gammaitoni L,H anggi P,Jung P,Marchesoni F 1998 Rev.Mod.Phys.70 2236Gitterman M 2001 J.Phys.A 34 L3557Jeyakumari S

15、,Chinnathambi V,Rajasekar S,Sanjuan M A F 2009Chaos 19 0431288Jeyakumari S,Chinnathambi V,Rajasekar S,Sanju an M A F 2009Phys.Rev.E 80 0466089Lin M,Huang Y M 2007 Acta Phys.Sin.56 6173(in Chinese)?fl,?Xr 2007?n?56 617310 Lin M,Meng Y 2010 Acta Phys.Sin.59 3627(in Chinese)?fl,?C 2010?n?59 362711 Balt

16、an as J P,L opez L,Blechman I I,Landa P,Zaikin A,Kurths J,Sanju an M A F 2003 Phys.Rev.E 67 06611912 Ullner E,Zaikin A,Garc a-Ojalvo J,B ascones R,Kurths J 2003Phys.Lett.A 312 34813 Deng B,Wang J,Wei X 2009 Chaos 19 01311714 Deng B,Wang J,Wei X,Tsang K M,Chan W L 2010 Chaos 2001311315 Yang J H,Liu X

17、 B 2010 J.Phys.A 43 12200116 Yao C,Zhan M 2010 Phys.Rev.E 81 06112917 Yang D X,Hu N Q 2003 J.Natl.Univ.Def.Technol.25 91(inChinese)?#,?)?2003 I?E?25 9118 Yang J H,Liu X B 2010 Chaos 20 03312419 Yang J H,Liu X B 2010 Phys.Scr.82 025006010505-7?n?Acta Phys.Sin.Vol.61,No.1(2012)010505Analysis of period

18、ic vibrational resonance induced bylinear time delay feedbackYang Jian-Hua Liu Xian-Bin(Institute of Vibration Engineering Research,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)(Received 16 July 2010;revised manuscript received 15 April 2011)AbstractUnder the excitations o

19、f the high-frequency and weak low-frequency signals,the effects of linear time delay feedback on thevibrational resonance in overdamped bistable system and Duffing systems are investigated respectively.Both the analytical and the nu-merical results show that the response amplitude of the system to t

20、he low-frequency signal varies periodically with the delay parametersimultaneously(with two different periods,i.e.,the periods of the two exciting signals).Numerical results also indicate that the delayfeedback can induce vibrational resonance in the monostable Duffing system in which there exists n

21、o traditional vibrational resonance.By adjusting the delay parameter,not only the vibrational resonance can be effectively controlled,but also the response of the systemto the weak low-frequency signal can be further improved.Keywords:bistable system,Duffing system,linear time delay feedback,vibrational resonancePACS:05.45.a,02.30.Ks,05.90.+m*Project supported by the National Natural Science Foundation of China(Grant No.11072107),and the Specialized Research Fund for theDoctoral Program of Higher Education of China(Grant No.20093218110003).E-mail:010505-8

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 财经金融

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁