《(精品)2.6.1菱形的性质 (2).ppt》由会员分享,可在线阅读,更多相关《(精品)2.6.1菱形的性质 (2).ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、18.2 18.2 平行四边形平行四边形18.2.2 18.2.2 菱形菱形第第1 1课时课时 菱形的性质菱形的性质平行四边形矩形前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.有一个角是直角复习旧知复习旧知矩形一思考如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?平行四边形定义:有一组邻边相等的平行四边形叫菱形.菱形邻边相等归纳总结AB=BCABCD四边形四边形ABCD是菱形是菱形菱形一欣赏下面图片,图片中框出的图形是菱形吗?问题1菱形是轴对称图形吗?如果是
2、,指出它的对称轴.是,两条对角线所在直线都是它的对称轴.问题2根据折叠过程,猜想菱形的四边在数量上有什么关系?菱形的两对角线有什么关系?猜想1 菱形的四条边都相等.猜想2 菱形的两条对角线互相垂直,并且每一条对 角线平分一组对角.已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;证明:(1)四边形ABCD是平行四边形,AB=CD,AD=BC(平行四边形的对边相等).又AB=AD,AB=BC=CD=AD.BADOC证一证(2)ACBD;DAC=BAC,DCA=BCA,ADB=CDB,ABD=CBD.(2)AB=AD,ABD是等腰三角形
3、.又四边形ABCD是平行四边形,OB=OD(平行四边形的对角线互相平分).在等腰三角形ABD中,OB=OD,AOBD,AO平分BAD,即ACBD,DAC=BAC.同理可证DCA=BCA,ADB=CDB,ABD=CBD.BADOC菱形的菱形的 两条对角线互相平分两条对角线互相平分菱形的两组对边平行且相等菱形的两组对边平行且相等边边对角线对角线角角菱形的四条边相等菱形的四条边相等菱形的两组对角分别相等菱形的两组对角分别相等菱形的邻角互补菱形的邻角互补菱形的两条对角线互相垂直平分,菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。每一条对角线平分一组对角。ADCBO1.菱形具有而一般平行四边形
4、不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等C2.(1)已知菱形ABCD的周长是12cm,那么它的边长是_.当堂练习当堂练习3cm例1如图,在菱形ABCD中,对角线AC、BD相交于点O,BD16cm,AC12cm,求菱形的周长解:四边形ABCD是菱形,ACBD,AOAC=6,BOBD=8.在RtABO中,由勾股定理得菱形的周长4AB41040(cm)典例精析菱形的面积二问题1菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形ABCD的面积吗?ABCD思考前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢?能.过点A作A
5、EBC于点E,则S菱形ABCD=底高=BCAE.E问题2如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.ABCDO你有什么发现?菱形的面积=底高=对角线乘积的一半菱形ABCD的两条对角线长分别为6cm和8cm,则菱形的面积是_.24cm2例3如图,菱形花坛ABCD的边长为20m,ABC60,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积.ABCDO解:花坛ABCD是菱形,花坛的两条小路长花坛的面积已知如图,菱形已知如图,菱形ABCD中,中,E是是AB的中的中点,且点,且DEAB,AB=2。求求(1)ABC的度数;的度数;(2)对角
6、线)对角线AC、BD的长;的长;(3)菱形)菱形ABCD的面积。的面积。ABCDEO练一练如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cmB.4.8cmC.5cmD.9.6cmB 如图,边长为如图,边长为a的菱形的菱形ABCD中,中,DAB=60度,度,E是异于是异于A、D两点的动点,两点的动点,F是是CD上的动点,满足上的动点,满足AE+CF=a。证明:不论证明:不论E、F怎样移动,三角形怎样移动,三角形BEF总是正总是正三角形。三角形。ABCDEF课堂小结课堂小结菱形的性质菱形的性质有关计算边1.周长=边长的四倍2.面积=底高=两条对角线乘积的一半角对
7、角线1.两组对边平行且相等;2.四条边相等两组对角分别相等,邻角互补1.两条对角线互相垂直平分;2.每一条对角线平分一组对角例2如图,在菱形ABCD中,CEAB于点E,CFAD于点F,求证:AEAF.证明:连接AC.四边形ABCD是菱形,AC平分BAD,即BACDAC.CEAB,CFAD,AECAFC90.又ACAC,ACEACF.AEAF.菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角归纳【变式题】如图,在菱形ABCD中,ABC与BAD的度数比为1:2,周长是8cm求:(1)两条对角线的长度;(2)菱形的面积解:(1)四边形ABCD是菱形,AB=BC,ACB
8、D,ADBC,ABC+BAD=180.ABC与BAD的度数比为1:2,ABC=180=60,ABO=ABC=30,ABC是等边三角形.菱形ABCD的周长是8cmAB=2cm,OA=AB=1cm,AC=AB=2cm,BD=2OB=cm;(2)S菱形ABCD=ACBD =2=(cm2)菱形中的相关计算通常转化为直角三角形或等腰三角形,当菱形中有一个角是60时,菱形被分为以60为顶角的两个等边三角形.归纳5.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E求证:AFD=CBE证明:四边形ABCD是菱形,CB=CD,CA平分BCDBCE=DCE又CE=CE,BCEDCE(SAS)CBE=CD
9、E在菱形ABCD中,ABCD,AFD=EDC.AFD=CBEADCBFE3.根据下图填一填:(1)已知菱形ABCD的周长是12cm,那么它的边长是_.(2)在菱形ABCD中,ABC120,则BAC_.(3)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形的边长是_.3cm30ABCOD5cm(4)菱形的一个内角为120,平分这个内角的对角线长为11cm,菱形的周长为_.44cm(5)菱形的面积为64cm2,两条对角线的比为12,那么菱形最短的那条对角线长为_.8cm2ABCOD4.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.求:(1)对角线AC的长度;(2)菱形
10、ABCD的面积.解:(1)四边形ABCD是菱形,AED=90,(2)菱形ABCD的面积AC=2AE=212=24(cm).DBCAE6.如图,O是菱形ABCD对角线AC与BD的交点,CD5cm,OD3cm;过点C作CEDB,过点B作BEAC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积解:(1)四边形ABCD是菱形,ACBD.在RTOCD中,由勾股定理得OC4cm;(2)CEDB,BEAC,四边形OBEC为平行四边形.又ACBD,即COB90,平行四边形OBEC为矩形.OBOD3cm,S矩形OBECOBOC4312(cm2)例3如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且DAE=2BAE,求证:OA=EB.ABCDOE证明:四边形ABCD为菱形,ADBC,AD=BA,ABCADC2ADB,DAEAEB,AB=AE,ABCAEB,ABC=DAE,DAE2BAE,BAEADB.又ADBA,AODBEA,AOBE.见学练优本课时练习课后作业课后作业