《(精品)2.2.1平行四边形的边、角性质 (3).ppt》由会员分享,可在线阅读,更多相关《(精品)2.2.1平行四边形的边、角性质 (3).ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.2 平行四边形平行四边形2.2.1 平行四边形的性质平行四边形的性质第第1课时课时 平行四边形的边、角的性质平行四边形的边、角的性质情景情景引入引入合作合作探究探究课堂课堂小结小结随堂随堂训练训练情景引入情景引入 在小学,在小学,我们已经认识了平行四边形我们已经认识了平行四边形.在图在图2-10 中找出平行四边形,并把它们勾画出来中找出平行四边形,并把它们勾画出来.图图2-10两组对边分别平行的四边形叫做平行四边形两组对边分别平行的四边形叫做平行四边形两组对边分别平行的四边形叫做平行四边形两组对边分别平行的四边形叫做平行四边形.读作:平行四边形读作:平行四边形读作:平行四边形读作:平行四边
2、形ABCDABCDA AD DB BC C记作:记作:记作:记作:A ABCBCD DABABCDCDADADBCBC四边形四边形四边形四边形ABCDABCD是平行四边形是平行四边形是平行四边形是平行四边形四边形四边形四边形四边形ABCDABCD是是是是平行四边形平行四边形平行四边形平行四边形ABABCDCDADADBCBC合作探究合作探究四边形四边形平行四边形平行四边形两组对边分别平行两组对边分别平行两组对边分别平行的四边形叫作平行四边形两组对边分别平行的四边形叫作平行四边形.如图如图2-11,在四边形,在四边形ABCD 中,中,ADBC,ABDC,则四边形则四边形ABCD是平行四边形是平行
3、四边形.图图2-11平行四边形的边、角有怎样的数量关系?平行四边形的边、角有怎样的数量关系?用两个全等的三角形纸片可以拼出几种形状不同的平行用两个全等的三角形纸片可以拼出几种形状不同的平行四边形?四边形?从拼图中可以得到什么启示?从拼图中可以得到什么启示?平行四边形可以由两个全等的三角形组成,因此在解决平行四边形可以由两个全等的三角形组成,因此在解决平行四边形的问题时,通常可以连接对角线转化为两个全等平行四边形的问题时,通常可以连接对角线转化为两个全等的三角形进行解题的三角形进行解题.在图在图2-13的的ABCD中,连接中,连接AC.1=2,4=3.ABDC,BCAD(平行四边形的两组对边分别
4、平行)(平行四边形的两组对边分别平行).图图2-13 四边形四边形ABCD为平行四边形,为平行四边形,又又 AC=CA,AB=CD,BC=DA,B=D.ABCCDA.又又1+4=2+3.即即BAD=DCB.结论结论平行四边形对边相等,平行四边形的对角相等平行四边形对边相等,平行四边形的对角相等.由此得到平行四边形的性质定理:由此得到平行四边形的性质定理:几何语言:几何语言:因为四边形因为四边形ABCDABCD是平行四边形,是平行四边形,所以所以ABABCDCD,ADADBCBC(平行四边形的对边相等),(平行四边形的对边相等),A=C,B=DA=C,B=D(平行四边形的对角相等),(平行四边形
5、的对角相等),例例1 如图如图2-14,四边形,四边形ABCD和和BCEF均为平行均为平行四边形,四边形,AD=2cm,A=65,E=33,求求EF和和BGC.举举例例图图2-141、在、在ABCD中,已知中,已知 A=130,则,则 B=,C=,D.2、在、在ABCD中,中,AB=2,BC=3,则这个平,则这个平行四边形的周长是行四边形的周长是_._.505013010随堂训练随堂训练3.如图所示,四边形如图所示,四边形ABCD是平行四边形是平行四边形v1)若周长为)若周长为30,CD6,则,则AB;BC;AD.v2)若)若A70,则,则B,C;D.v3)若)若AC=80,则,则A;D.1 1、平行四边形的定义:、平行四边形的定义:、平行四边形的定义:、平行四边形的定义:两组对边分别平行的四边两组对边分别平行的四边两组对边分别平行的四边两组对边分别平行的四边形叫做平行四边形形叫做平行四边形形叫做平行四边形形叫做平行四边形.2 2、平行四边形的性质:平行四边形的对边平行且、平行四边形的性质:平行四边形的对边平行且、平行四边形的性质:平行四边形的对边平行且、平行四边形的性质:平行四边形的对边平行且相等;平行四边形的对角相等相等;平行四边形的对角相等相等;平行四边形的对角相等相等;平行四边形的对角相等.课堂小结课堂小结课后作业见学练优本课见学练优本课时练习时练习