《(精品)4.1.1变量与函数 (6).ppt》由会员分享,可在线阅读,更多相关《(精品)4.1.1变量与函数 (6).ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、4.1 函数和它的表示法第4章 一次函数4.1.1 变量与函数导入新课导入新课万物皆变 行星在宇宙中的位置随时间而变化情境引入气温随海拔而变化汽车行驶里程随行驶时间而变化 为了更深刻地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.讲授新课讲授新课变量与函数一 我们生活在一个变化的世界,通常会看到在同一变化过程中,有两个相关的量,其中一个量往往随着另一个量的变化而变化,那我们如何来研究各种运动变化呢?数学上常用变量与函数来刻画各种运动变化.问题1 如图,用热气球探测高空气象.当t=3min,h为650m 设热气球从海拔500m处的某地升空,它上
2、升后到达的海拔高度h m与上升时间t min的关系记录如下表:时间t/min01234567海拔高度h/m500550600650700750800850当t=2min,h为600m当t=1min,h为550m当t=0min,h为500m(1)计时一开始,热气球的高度是多少?(2)热气球的高度随时间的推移而升高的高度有规律吗?(3)你能总结出h与t的关系吗?500m50m150m50m2=100m50m3=150m50m4=200m50mt=50tmh=500+50t(4)哪些量发生了变化?哪些量没有发生变化?保持不变的量(常量)热气球原先所在的高度500m气球上升的速度50m/min不断变化
3、的量热气球升空的时间tmin气球升空的高度hm(变量)因别人变化而变化的量_.自我发生变化的量_;(5)热气球上升的高度h与时间t,这两个变量之间有关系吗?th结论:在一个变化的过程中,取值会发生变化的量称为变量,取值固定不变的量称为常量.时间t/min01234567海拔高度h/m500550 600650700750 800850典例精析例1 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元千克,买a千橘子的总价为m元,其中常量是 ,变量是 ;(2)周长C与圆的半径r之间的关系式是C2r,其中常量是 ,变量是 ;(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高h(c
4、m)的关系式 中,其中常量是 ,变量是 ;5a,m2,C,r注意:是一个确定的数,是常量S,h指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/升,加油 x L,车主加油付油费为 y 元;(2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数为 n;(3)用长为40 cm 的绳子围矩形,围成的矩形一边长为 x cm,其面积为 S cm2 (4)若直角三角形中的一个锐角的度数为,则另一个锐角(度)与间的关系式是=90.练一练例2 阅读并完成下面一段叙述:某人持续以a米分的速度用t分钟时间跑了s米,其中常量是,变量是.s米的路程不同的人以不同的速度a米分各需跑的时间
5、为t分,其中常量是,变量是.3.根据上面的叙述,写出一句关于常量与变量的结论:.在不同的条件下,常量与变量是相对的at,ssa,t 区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.方法 问题2 下图是某市某日自动测量仪记下的用电负荷曲线.O(1)你发现哪些变量?哪个是自变量?哪个是因变量?为什么?时间、负荷时间负荷因为负荷随时间的变化而变化.O(3)这一天的用电高峰、用电低谷时负荷各是多少?它们是在 什么时刻达到的?(2)任意给出这一天中的某一时刻,如4.5h、20h,你能找到这 一时刻的用电负荷y MW(兆瓦)是多少吗?说明了什么?能,分别为10000MW
6、、15000MW,说明t的值一确定,y的值就唯一确定了.问题3 汽车在行驶过程中,由于惯性的作用刹车后仍将滑行一段距离才能停住,这段距离称为刹车距离.刹车距离是分析事故原因的一个重要因素.(1)式中哪个量是常量?哪个量是变量?哪个量是自变 量?哪个量是因变量?某型号的汽车在平整路面上的刹车距离sm与车速vkm/h之间有下列经验公式:(2)当刹车时车速v 分别是40、80、120km/h时,相应的 滑行距离s分别是多少?当v40km/h时,s6.25m;当 v80km/h时,s25m;当 v120km/h时,s56.25m.256;s,v;v;s.一般地,如果变量y随着变量x而变化,并且对于x取
7、的每一个值,y都有唯一的一个值与它对应,那么称y是x的函数,记作:y=f(x).这时把x叫作自变量,把y叫作因变量.对于自变量x取的每一个值a,因变量y的对应值称为函数值,记作f(a).概念学习典例精析例3 下列关于变量x,y 的关系式:y=2x+3;y=x2+3;y=2|x|;y2-3x=10,其中表示y 是x 的函数关系的是 判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有唯一确定的值与它对应.方法一个x值有两个y 值与它对应例4 已知函数(1)求当x=2,3,-3时,函数的值;(2)求当x取什么值时,函数的值为0.解:(1)当x=2时,y=;当x=3时,y=;当
8、x=-3时,y=7.(2)令 解得x=即当x=时,y=0.把自变量x的值带入关系式中,即可求出函数的值.例5:如图,已知圆柱的高是4cm,底面半径是r(cm),当圆柱的底面半径r由小变大时,圆柱的体积V(cm3)是r的函数.(1)用含r 的代数式来表示圆柱的体积V,指出自变量r 的取值范围.(2)当r=5,10时,V是多少(结果保留)?圆柱的体积 自变量r的取值范围是r 0.当r=5时 当r=10 时 当堂练习当堂练习1.设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为 ,这个关系式中,是常量,是变量,是 的函数.60s=60t t和sst2.油箱中有油30kg,油从管道中匀
9、速流出,1h流完,则油箱中剩余油量Q(kg)与流出时间t(min)之间的函数关系式是 .3.写出下列各问题的函数关系式,并指出其中的常量与变量,自变量与函数.(1)运动员在200米一圈的跑道上训练,他跑一圈所用的时间t(秒)与跑步的速度v(米/秒)的关系式;(2)n边形的对角线条数s与边数n之间的关系式.解:(1),其中200是常量,v、t是变量,v是自变量,t是v的函数.(2),其中 ,-3是常量,s、n是变量,n是自变量,s是n的函数.4.下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量.(1)改变正方形的边长 x,正方形的面积 S 随之变化;(2)秀水村的耕地面积是106
10、 m2,这个村人均占有耕地面积 y(单位:m2)随这个村人数 n 的变化而变化;(3)P是数轴上的一个动点,它到原点的距离记为 x,它对应的实数为 y,y 随 x 的变化而变化 解:(1)S 是x的函数,其中x是自变量.(2)y 是n的函数,其中n是自变量.(3)y 不是x的函数.例如,到原点的距离为1的点对应实数1或-1,变量与函数常量与变量:在一个变化的过程中,取值会发生变化的量称为变量,取值固定不变的量称为常量.课堂小结课堂小结函数:一般地,如果变量y随着变量x而变化,并且对于x取的每一个值,y都有唯一的一个值与它对应,那么称y是x的函数,记作:y=f(x).见学练优本课时练习课后作业课后作业