电极过程动力学 (8).pdf

上传人:刘静 文档编号:69163679 上传时间:2022-12-30 格式:PDF 页数:47 大小:2MB
返回 下载 相关 举报
电极过程动力学 (8).pdf_第1页
第1页 / 共47页
电极过程动力学 (8).pdf_第2页
第2页 / 共47页
点击查看更多>>
资源描述

《电极过程动力学 (8).pdf》由会员分享,可在线阅读,更多相关《电极过程动力学 (8).pdf(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、61Chapter6:TheCurrentDistribution*1.Significance2.WhatControlstheCurrentDistribution?3.DeterminationoftheCurrentDistribution4.ControllingMode3sandApproximations5.PrimaryDistribution6.SecondaryDistribution*Thefollowingtextisbased,inpart,onmaterialthatisinpressforpublicationin“AdvancesinElectrochemist

2、ryandElectrochemicalEngineering”,Vol.45,Elsevier.621.INTRODUCTIONANDOVERVIEWThetopicofcurrentdistributionmodelingiscentraltotheanalysisofelectrochemicalsystemsandhasbeenaddressedintextbooks(1),reviews(e.g.,24)andnumerousjournalpublications.Newmanstextbook(1)providesameticulousandcomprehensivetreatme

3、ntofthesubject.PrenticeandTobias(2)presentareviewoftheearly(upto1980)publicationsinthearea.Dukovicsmorerecentreview(3)isverycomprehensive,providingcriticalanalysisofboththeelectrochemicalandthenumericalaspectsofthetopic.ArecentreviewbySchlesinger(4)focuses primarily on the numerical techniques.The p

4、resent monograph introduces thefundamentalprocessesandequationsunderlyingthemodelingofthecurrentdistribution,andcritically analyzes common assumptions and approximations.Focus is placed on discussingscaling parameters for the characterization of the current distribution.Commonly usedalgorithmsfornum

5、ericaldeterminationofthecurrentdistributionarecomparedandafewnumericalimplementationsarediscussed.Lastly,themodelingofthecurrentdistributioninsomespecialconfigurationsandapplicationsisintroduced,emphasizingrecentpublications.2.SIGNIFICANCEOFMODELINGTHECURRENTDISTRIBUTIONThecurrentdistributionisamong

6、themostsignificantparameterscharacterizingtheoperationoftheelectrochemicalcell.Thecurrentdensityontheelectrodesisdirectlyproportionaltothereactionrateanditsdistributioncriticallyaffectstheelectrochemicalprocess.Inelectroplating,thedepositthicknessdistribution,andpropertiessuchasthedepositsurfacetext

7、ureanditsmorphology are directly linked to the current distribution.When multiple simultaneouselectrodereactionsarepresent,suchasinalloydepositionorinhydrogencoevolution,thealloycompositionintheformercase,andthecurrentefficiencyinthelatter,arecontrolledbyImportance of Modeling Identify critical proc

8、ess parameters and their impact Relate global measurable parameters to local variables in which we are interested Predictive and rationale design&scale-up eliminate trial&error save time and costs Optimize&control processes Interpretation of experiments63the overpotential distribution,which,as discu

9、ssed below,is directlyrelated to the currentdistribution.Electrolyticprocesseswhichdonotinvolvedepositionarealsostronglyaffectedbythecurrentdistribution.Examplesincludeoptimizedutilizationofcatalyticelectrodesandtheneedtopreventthecurrentdensityfromsurgingonelectrodesections,onseparatorsandonmembran

10、es.Thepowerrequiredforoperatinganelectrochemicalcell,andparticularlytheohmiclossarealsodependentonthecurrentdistribution.Lastly,thecorrectinterpretationofexperimentaldatahingesonunderstandingtherangeofcurrentdensitiestowhichthetestedelectrodehasbeensubjected.Thecurrentdistributioncanbeanalyzedondiff

11、erentscales.Themacroscopiccurrentdistributionofthe,wherethedistributionisresolvedonlengthscaleoftheorderofcm,isimportantincharacterizingthedepositthicknessuniformityonaplatedpart,orinselectiveplating,whereanonuniformcurrentdistributionissought.Themicroscaledistribution,ontheotherhand,wherethecurrent

12、densityisresolvedonsubmmlengthscalesaffectsprimarilyparameters such as the deposit texture and roughness,nucleation and deposition withinmicronandnanoscalefeatures.For many applications,numerical simulation capability which provides the currentdistribution in a given configuration and plating condit

13、ions,or for a given set of suchparameters,issufficient.However,forpredictiveprocessdesignandforscaleupofcellsandprocesses(andscaledownofindustrialprocessesforlaboratorytesting)analyticalmodelsthatelucidate the dependence of the current distribution on the process parameters are morebeneficial.643.EX

14、PERIMENTALDETERMINATIONOFTHECURRENTDISTRIBUTIONElectroplating processes,where a solid deposit is formed and its thickness can be directlymeasured,providearelativelyconvenientmeansfordeterminationofthecurrentdistribution.Thedepositthicknesscanbemeasuredbyanumberofcommerciallyavailabledevices,basedone

15、.g.,xrayfluorescence,betabackscatter,magneticproperties,orcontrolleddissolution.Adirectprobebasedontheinducedfieldassociatedwiththecurrentflowhasbeenrecentlyintroduced.Opticalandelectronmicroscopyofcrosssectioneddepositsprovideacommonmeansformeasuringthedepositthickness.Oncethedepositthickness,d,ism

16、easured,itcanberelatedtothecurrentdensity,i,throughFaradayslaw:FM tdiF n1Here,tistheplatingtime.FisFaradaysconstant,M,andnaretheplatedmetalatomicweight,its density,and the number of electrons transferred in the deposition reaction,respectively.F is the Faradaic efficiency,accounting for side(parasit

17、ic)reactions.MetalsnobletohydrogentypicallyplatefromaqueoussolutionsatF1correspondingtocloseto100%Faradaicefficiency(unlesstheyaredriventothelimitingcurrent).WhentheFaradaic65efficiencyislessthan100%,eq.1canbeusedtodeterminethecurrentefficiencyoncethecurrentdensityisevaluated.Forthecaseofredoxorgase

18、volvingreactions,wherenosoliddepositisformed,thecurrent distribution on the electrodes can be determined using segmented electrodes,orinsulatedprobeelectrodes.Here,theelectrodeonwhichthecurrentdistributionissoughtissectionedintomultiple,electricallyisolatedsegments,towhichthecurrentmaybeindividually

19、fedandmeasured.Ifmultiple,narrow,segmentsareprovided,theaveragesegmentalcurrentdensities,obtainedbydividingthesegmentalcurrentsbythecorrespondingsegmentalareas,provideanapproximationtothecurrentdistribution.Forthesegmentedelectrodetoresembleacontinuouselectrode,allsegmentsmustbecoplanarandessentiall

20、yequipotential.ToassurethatthepotentialofallsegmentsiswithinafewmV,multichannelpotentiostatsmustbeused.Alesscostlyapproachistoconnecteachsegmenttothecommonbusviaverylow(typicallym)shuntresistor,whichenablesthemeasurementofthecurrentyetintroducesinsignificantvoltagevariation.Modeling Analytical Appro

21、ximations Numerical Analogies Electrostatics Magnetic Electrolytic trough Experimental Cross section back scatter X-ray fluorescence Cutting and weighing Striping with coulometry Isotope deposition Magnetic flux Sound reflection Direct probe measurement(Hall effect)Sectioned electrode Potential fiel

22、d mappingDetermination of the current distribution66 Chemistry Kinetics(additives)Conductivity Complexing agents Flow Agitation Ultrasound Temperature Cell GeometryShields Thieves Shape of the anode Part shape Voltage(current)Non DC waveforms(pulsing)How can we control the current distribution?What

23、controls the current distribution?Why is the current distribution not uniform?i1,L1i2,L2i2,L2i1,L167What controls the current distribution?Why is the current distribution not uniform?i1,L1i2,L2I=-?V/R (ohms law)IViAR ARi1Assume ohmic control(primary):VVViLRAALALi11221LLiiIn general:V1=E0+a(i1)+C(i1)

24、+O(i1)V2=E0+a(i2)+C(i2)+O(i2)V1=V2E0+a(i1)+C(i1)+O(i1)=E0+a(i2)+C(i2)+O(i2)The current density will adjust to maintain the voltage balanceNote:1 i=i(x,y,z)2 system is non-linear 3 L is a-priory unknownAssumption:Electrodes are equi-potential,i.e.no terminal effect 1Overpotentials The Driving ForceAp

25、plied Voltage=Standard Potential+Overpotential?V =E0+?T(i)?T =?a(i)+?C(i)+?O(i)li0lniiFRTaLCiiFnRT1lnLength scale(cm)Time scale(sec)10-610-610-31110-13Activation:Concentration:Ohmic:VXE0?a?C?O?V?C?ORbLtCDFni1Limiting current:?a684.ANALYTICALDERIVATIONOFTHECURRENTDISTRIBUTIONThistopiciscoveredinsigni

26、ficantdetailinNewmanstextbooks(1).Asummary,relevanttotheensuingdiscussionisprovidedhere.TheCurrentDensityThecurrentdensityisdirectlyrelatedtotheionicflux,Nj,intheelectrochemicalcell.Thefluxistypically described in terms of three major components:diffusion of ions across aconcentrationgradient,migrat

27、ionofchargedionsdowntheelectricfield,andtransportofionsduetobulkelectrolyteconvection.Consequently,thefluxofanionicspeciesjisgivenby:jjjjjjJNDcu z Fcc v 2ThecurrentdensityisdeterminedbyassigningthechargeFzjtothefluxofeachspeciesjandsummingoverallionicspecies:jjjiFz N 3SubstitutingEq.2intoEq.3,22jjjj

28、jjjJjjjiFz DcFu z cFz cv 4Electroneutrality,expressedas:0jjjz c 5ispresentthroughoutthecell(exceptforthevanishinglythindoublelayer)andrendersthelasttermontherightofEq.4tozero,providingforthetotalcurrentdensity:22jjjjjjjjiFz DcFu z c 6Wealsorecognize(1)thattheelectrolyteconductivity,isgivenby:22jjjjF

29、u z c7Hencewecanrewriteeq.6as:69jjjjiFz Dc 8Eq.8 indicates that the current density is determined by both the potential andconcentration gradients.The explicit velocity term is absent from eq.8(due toelectroneutrality),however,convection still affects the current density by controlling theconcentrat

30、ionfield.ItshouldalsobenotedthattheelectrodekineticswhichdonotappearexplicitlyinEq.8establishtheboundaryconditionsrequiredforitssolution.Assubsequentlyshown,theelectrodekineticsmayinfluencequitesignificantlythecurrentdistribution.Whilerepresentingthecurrentdensityasafunctionofthepotentialandconcentr

31、ationdistributions,eq.8 does not provide the necessary relationships required for solving thedistribution.Thisisderivedfromtheconstitutiveequationsdescribedbelow.Ionic flux is due to:Diffusion +Electric Migration +Convection+.Diffusion=-DjCjMigration=-UjZjFCjConvection=CjvIonic TransportBoundary lay

32、ers+-Ionic Flux:Nj=-DjCj-UjZjFCj+Cjv +.moles/sec cm2Current density is due to flux of all charge carrying species:i=ZjFNj=-FZjDjCj-F2UjZj2Cj+F ZjCjv Electroneutrality:Current density:i=-F ZjDj Cj-Compare with(the differential form of)Ohms law:i=-I=-?V/R0jjjZCVNjZj?610MaterialbalanceThegoverningequat

33、ionsforacellwithdiffusion,migrationandconvectionarederivedbyperformingamaterialbalanceonavolumeelement,foreachoftheionicspecies:jjc=NtjR9Rj is the rate of species j generation due to a homogeneous reaction within the volumeelement.Such reactions are uncommon in electrochemical cells(may be encounter

34、ed e.g.,whenacomplexdissociates,releasingtheionicspeciesj),andthereforewesetidentically,Rj=0.When the flux expression,eq.2 is substituted into eq.9 the general equation(NernstPlanck)fortheconcentrationandpotentialfieldsisobtained.jjjjjjjc+vc =F(z u c)+(Dc)t10Foramulticomponentelectrolytewithjionicsp

35、ecies,equation10representsasystemofjequations,oneforeachionicspecies.Sincethepotentialispresentineachequation,thereareatotalofj+2unknowns(jspeciesconcentrations,cj+theelectrostaticpotential,thefluidvelocity,v).The extra equations required for solving the system are the electroneutralitycondition5,an

36、dthemomentumequationwhichdescribesthefluidvelocityatalllocationswithin thecell.Themomentum equation is typicallyrepresentedin terms of the NavierStokesapproximation(5):221()jiiTijTjijjjiVVpVVVxxxxxx 11TheNavierStokesequationiswrittenhereforaCartesiantwodimensionalcoordinatesystemwhereiandjrepresentt

37、hetwoaxes.Accordingly,viandvjarethevelocitycomponentsinthedirections i and j.P is the hydrostatic pressure,and andT are the molecular and theturbulentkinematicviscosity,respectively(5).Forsystemsinvolvingforcedconvection,thefluid flow equations are typically decoupled from the electrochemical proces

38、s,and can besolvedseparately.The set of j+2 equations(j eqs.10+electroneutrality(eq.5)+the momentumequation11)fullydescribethecurrent,potentialandconcentrationdistributionsinthecellas611a function of time.This set of equations must be solved subject to the electrochemicalboundaryconditions.Material

39、BalanceRate of accumulation =net flux in +generationjjjRNtCCbThin boundary layer:?CjjjjjjjCDCZ FU CVCt Nernst-Plank Eq.This is the fundamental equation to solveUnknowns:UnknownSymbolNumberConcentrations CjjPotentialF1VelocityV1 (vector)totalj+2Equations:NameNumberNernst-Plank jElectroneutrality1Flow

40、1 (vector)totalj+2jjjjjjjNDCUZF CC V BoundaryconditionsTwotypesofboundariesarepresentinelectrochemicalcells:(i)electrodesand(ii)insulatingboundaries.(i)Insulator:Here,nocurrentmayflowintotheboundary,andaccordingly,thecurrentdensitynormaltotheinsulatingboundaryisspecifiedaszero,i =0n12(ii)Electrodes:

41、On an electrode,an expression for the reaction kinetics that relates thepotentialtothenormalcurrentmustbeprovided:612neji=f(c,)e13ElectrodekineticsandoverpotentialsTypically,thecurrentdensityisrelatedtotheoverpotential,which is the driving force for the electrochemical reaction.The overalloverpotent

42、ialattheelectrodeisgivenby:VE14Vistheelectrodepotential.Eisthethermodynamicequilibriumpotentialcorrespondingtotheconditionofnocurrentflow,andistheelectrostaticpotentialwithinthesolutionnexttheelectrode,measuredattheouteredgeofthemasstransport(=concentration)boundarylayer.Thetotaloverpotentialattheel

43、ectrodecanbefurtherresolvedintotwooverpotentialcomponents,sandc,Thefirst,s,isthesurface(oractivation)overpotential,whichrelatesdirectlytothekineticsoftheelectrodeprocesses.Thesecondoverpotentialcomponent,c,istheconcentrationoverpotential,accountingforthevoltagedissipationassociatedwithtransportlimit

44、ations.Thesurfaceoverpotential,S,istypicallyrelatedtothecurrentdensitythroughtheButlerVolmerequation(6).0,eni =iexp()exp()ACssFFRTRT15Eq.15incorporatesthreeempiricallymeasuredparameters:theexchangecurrentdensity,i0,(givenhereintermsofitsvalueontheelectrode,i0,e)andtheanodicandcathodictransfercoeffic

45、ients,A andC,respectively.These parameters are obtained from polarizationmeasurements(7).Often,butnotalways,A+C=n.ItshouldbenotedthatwhiletheButlerVolmer equation correlates well many electrode reactions,there are numerous others,particularlywhencarriedinthepresenceofplatingadditiveswhichdonotfollow

46、it.TheButlerVolmerequationintheformpresentedbyEq.15relatestopureelectrodekinetics and does not consider transport limitations,which cause the concentration at theelectrode,ce,tovaryfromitsbulkvalue,cb.Thisconcentrationvariationaffectsmostlytwoparameters:theexchangecurrentdensity,i0,whichisafunctiono

47、ftheconcentration,andtheoverpotential,whichnowalsoincludesthecomponentassociatedwithtransportlimitations,C,.Wecanwrite=SC16613Wheretheconcentrationoverpotential,C,isgivenby:=lnnFeCbRTcc17Itshouldbenotedthatthedivisionofthetotaloverpotentialintoapurekineticscomponent,(S)andamasstransportcomponent(C)a

48、spresentedbyeq.16issomewhatarbitraryandisusedmainlytocharacterizethetwotypesofdissipativeprocesses.Bothtermsarestronglycoupledanditisverydifficulttodirectlymeasureeithercomponentseparately.Whilechemicalengineersoftendiscussthetwooverpotentialcomponentsseparately(1),chemists(e.g.,6,7)tendtocombinebot

49、htermstogetherandcharacterizetheelectrochemicalsystemintermsofthetotaloverpotential,.Toaccountfortheconcentrationvariationswhicharealwayspresentatelectrodesincurrentcarryingcells,acorrectionmustbeintroducedintoeq.15.Eitheroftwoapproachesistypicallytaken:thefirst,morecharacteristictoengineeringpublic

50、ations(1),presentseq.15as:,cAssbFFoReeRTRTo coRbbCCiieeCC 18Writtenhereforthegeneralfirstorderreaction:O+ne R19andareparametersadjustingthevalueofi0,fromitsbulkvaluetoitsvalueattheelectrodeandaregenerallydeterminedempirically.Ifthereducedspeciesdoesnotdissolvewithintheelectrolyte(as in most plating

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁