(第二课时)古典概型题目ppt课件.ppt

上传人:飞****2 文档编号:68704659 上传时间:2022-12-29 格式:PPT 页数:18 大小:446KB
返回 下载 相关 举报
(第二课时)古典概型题目ppt课件.ppt_第1页
第1页 / 共18页
(第二课时)古典概型题目ppt课件.ppt_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《(第二课时)古典概型题目ppt课件.ppt》由会员分享,可在线阅读,更多相关《(第二课时)古典概型题目ppt课件.ppt(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能古典概型古典概型为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能复习复习1 1:什么是基本事件?什么是等可能基本事件?什么是基本事件?什么是等可能基本事件?我们又是如何去定义古典概型?我们又是如何去定义古典概型?在一次试验中可能出现的每一基本结果称为在一次试验中可能出现的每一基本结果称为基本事件基本事件若在一次试验中,每个基本事件发生的可能性都相同,若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为则称这些基

2、本事件为等可能基本事件等可能基本事件满足以下两个特点的随机试验的概率模型称为满足以下两个特点的随机试验的概率模型称为古典概型古典概型:所有的基本事件只有有限个所有的基本事件只有有限个 每个基本事件的发生都是等可能的每个基本事件的发生都是等可能的(即(即试验结果的有限性试验结果的有限性和和所有结果的等可能性所有结果的等可能性。)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能复习复习2:求古典概型的步骤:求古典概型的步骤:v(1)判断是否为等可能性事件;)判断是否为等可能性事件;v(2)计算所有基本事件的总结果数)计算所有基本事件的总

3、结果数nv(3)计算事件)计算事件A所包含的结果数所包含的结果数mv(4)计算)计算 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例1 1(摸球问题摸球问题):一个口袋内装有大小相同的):一个口袋内装有大小相同的5 5个红球和个红球和3 3个黄球,从中一次摸出两个球。个黄球,从中一次摸出两个球。求摸出的两个球一红一黄的概率。求摸出的两个球一红一黄的概率。问共有多少个基本事件;问共有多少个基本事件;求摸出两个球都是红球的概率;求摸出两个球都是红球的概率;求摸出的两个球都是黄球的概率;求摸出的两个球都是黄球的概率;为深入学习习近平

4、新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例1(摸球问题摸球问题):一个口袋内装有大小相同的):一个口袋内装有大小相同的5个红球和个红球和3个黄球,个黄球,从中一次摸出两个球。从中一次摸出两个球。问共有多少个基本事件;问共有多少个基本事件;解:解:分别对红球编号为分别对红球编号为1、2、3、4、5号,对黄球编号号,对黄球编号6、7、8号,从中任取两球,有如下等可能基本事件,枚举如下:号,从中任取两球,有如下等可能基本事件,枚举如下:(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(

5、1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(4,6)、()、(4,7)、()、(4,8)(5,6)、()、(5,7)、()、(5,8)(6,7)、()、(6,8)(7,8)7654321共有共有28个等可能事件个等可能事件28为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例1(摸球问题摸球问题):一个口袋内装有大小相同的):一个口袋内装有大小相同的5个红球和个红球和

6、3个黄球,个黄球,从中一次摸出两个球。从中一次摸出两个球。求摸出两个球都是红球的概率;求摸出两个球都是红球的概率;设设“摸出两个球都是红球摸出两个球都是红球”为事件为事件A则则A中包含的基本事件有中包含的基本事件有10个,个,因此因此(5,6)、()、(5,7)、()、(5,8)(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(

7、4,6)、()、(4,7)、()、(4,8)(6,7)、()、(6,8)(7,8)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例1(摸球问题摸球问题):一个口袋内装有大小相同的):一个口袋内装有大小相同的5个红球和个红球和3个黄球,个黄球,从中一次摸出两个球。从中一次摸出两个球。求摸出的两个球都是黄球的概率;求摸出的两个球都是黄球的概率;设设“摸出的两个球都是黄球摸出的两个球都是黄球”为事件为事件B,故故(5,6)、()、(5,7)、()、(5,8)(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,

8、6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(4,6)、()、(4,7)、()、(4,8)(6,7)、()、(6,8)(7,8)则事件则事件B中包含的基本事件有中包含的基本事件有3个,个,为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例1(摸球问题摸球问题):一个口袋内装有大小相同的):一个口袋内装有大小相同的5个红球和个红球和3个黄球

9、,个黄球,从中一次摸出两个球。从中一次摸出两个球。求摸出的两个球一红一黄的概率。求摸出的两个球一红一黄的概率。设设“摸出的两个球一红一黄摸出的两个球一红一黄”为事件为事件C,(5,6)、()、(5,7)、()、(5,8)(1,2)、()、(1,3)、()、(1,4)、()、(1,5)、()、(1,6)、()、(1,7)、()、(1,8)(2,3)、()、(2,4)、()、(2,5)、()、(2,6)、()、(2,7)、()、(2,8)(3,4)、()、(3,5)、()、(3,6)、()、(3,7)、()、(3,8)(4,5)、()、(4,6)、()、(4,7)、()、(4,8)(6,7)、()

10、、(6,8)(7,8)故故则事件则事件C包含的基本事件有包含的基本事件有15个,个,为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能答:答:共有共有28个基本事件;个基本事件;摸出两个球都是摸出两个球都是红红球的概率球的概率为为摸出的两个球都是黄球的概率摸出的两个球都是黄球的概率为为摸出的两个球一摸出的两个球一红红一黄的概率一黄的概率为为 通过对摸球问题的探讨,你能总结出求古典概型通过对摸球问题的探讨,你能总结出求古典概型概率的方法和步骤吗?概率的方法和步骤吗?想想一一想想?为深入学习习近平新时代中国特色社会主义思想和党的十九大精神

11、,贯彻全国教育大会精神,充分发挥中小学图书室育人功能6 7 8 9 10 11例例2(掷骰子问题掷骰子问题):将一个骰子先后抛掷):将一个骰子先后抛掷2次,观察向上的点数。次,观察向上的点数。问问:(1)共有多少种不同的结果共有多少种不同的结果?(2)两数之和是)两数之和是3的倍数的结果有多少种?的倍数的结果有多少种?(3)两数之和是)两数之和是3的倍数的概率是多少?的倍数的概率是多少?第一次抛掷后向上的点数第一次抛掷后向上的点数1 2 3 4 5 6第第二二次次抛抛掷掷后后向向上上的的点点数数6 65 54 43 32 21 1 解解:(1)将)将骰子抛掷骰子抛掷1次,次,它出现的点数有它出

12、现的点数有1,2,3,4,5,6这这6种结果,对于每一种结果,种结果,对于每一种结果,第二次抛时又都有第二次抛时又都有6种可能的结种可能的结果,于是共有果,于是共有66=36种不同的结种不同的结果。果。2 3 4 5 6 73 4 5 6 7 84 5 6 7 8 97 8 9 10 11 125 6 7 8 9 10由表可知,等可能基由表可知,等可能基本事件总数为本事件总数为36种。种。为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能1 2 3 4 5 6第一次抛掷后向上的点数第一次抛掷后向上的点数7 7 8 9 10 11 12

13、 8 9 10 11 126 7 8 9 10 116 7 8 9 10 115 5 6 7 8 9 10 6 7 8 9 104 5 6 7 8 94 5 6 7 8 93 4 5 6 7 83 4 5 6 7 82 3 4 5 6 72 3 4 5 6 76 65 54 43 32 21 1第第二二次次抛抛掷掷后后向向上上的的点点数数(2)记)记“两次向上点数之和是两次向上点数之和是3的倍数的倍数”为事件为事件A,则事件则事件A的结果有的结果有12种。种。(3)两次向上点数之和是)两次向上点数之和是3的倍数的概率为:的倍数的概率为:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神

14、,贯彻全国教育大会精神,充分发挥中小学图书室育人功能解:记解:记“两次向上点数之和不低于两次向上点数之和不低于10”为事件为事件B,则事件则事件B的结果有的结果有6种,种,因此所求概率为:因此所求概率为:1 2 3 4 5 6第一次抛掷后向上的点数第一次抛掷后向上的点数7 7 8 9 10 11 12 8 9 10 11 126 7 8 9 10 116 7 8 9 10 115 5 6 7 8 9 10 6 7 8 9 104 5 6 7 8 94 5 6 7 8 93 4 5 6 7 83 4 5 6 7 82 3 4 5 6 72 3 4 5 6 76 65 54 43 32 21 1第

15、第二二次次抛抛掷掷后后向向上上的的点点数数变式变式1:两数之和不低于:两数之和不低于10的结果有多少种?两的结果有多少种?两数之和不低于数之和不低于10的的概的的概率是多少?率是多少?为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能1 2 3 4 5 6第一次抛掷后向上的点数第一次抛掷后向上的点数7 7 8 9 10 11 12 8 9 10 11 126 7 8 9 10 116 7 8 9 10 115 5 6 7 8 9 10 6 7 8 9 104 5 6 7 8 94 5 6 7 8 93 4 5 6 7 83 4 5 6

16、 7 82 3 4 5 6 72 3 4 5 6 76 65 54 43 32 21 1第第二二次次抛抛掷掷后后向向上上的的点点数数 根据此根据此表,我们表,我们还能得出还能得出那些相关那些相关结论呢?结论呢?变式变式3:点数之和为质数的概率为多少?点数之和为质数的概率为多少?变式变式4:点数之和为多少时,概率最大且概率是多少?点数之和为多少时,概率最大且概率是多少?点数之和为点数之和为7时,概率最大,时,概率最大,且概率为:且概率为:7 7 8 9 108 9 10 11 11 12126 6 7 7 8 9 108 9 10 11 115 5 6 6 7 7 8 9 108 9 104 4

17、 5 5 6 6 7 7 8 98 93 3 4 4 5 5 6 6 7 7 8 82 3 2 3 4 4 5 5 6 6 7 7为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能变式变式3:如果抛掷三次,问抛掷三次的点数都是偶数的概率,如果抛掷三次,问抛掷三次的点数都是偶数的概率,以及抛掷三次得点数之和等于以及抛掷三次得点数之和等于9的概率分别是多少?的概率分别是多少?分析:分析:抛抛掷掷一次会出一次会出现现6种不同种不同结结果,当果,当连连抛抛掷掷3次次时时,事件所含基本事件事件所含基本事件总总数数为为6*6*6=216 种,且每

18、种结果都是种,且每种结果都是等可能的等可能的.解:解:记记事件事件E表示表示“抛抛掷掷三次的点数都是偶数三次的点数都是偶数”,而每次,而每次抛抛掷掷点数点数为为偶数有偶数有3种种结结果:果:2、4、6;由于基本事件数目较多,已不宜采用枚举法,利用计由于基本事件数目较多,已不宜采用枚举法,利用计数原理,可用分析法求数原理,可用分析法求n和和m的值。的值。因此,事件因此,事件E包含的不同结果有包含的不同结果有3*3*3=27 种种,故故记事件记事件F表示表示“抛掷三次得点数之和为抛掷三次得点数之和为9”,由于由于9126135144225234333,为深入学习习近平新时代中国特色社会主义思想和党

19、的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能记事件记事件F表示表示“抛掷三次得点数之和为抛掷三次得点数之和为9”,由于由于9126135144225234333,对于对于135来说,连抛三次可以有(来说,连抛三次可以有(1,3,5)、)、(1,5,3)、()、(3,1,5)、()、(3,5,1)、)、(5,1,3)、()、(5,3,1)共有)共有6种情况。种情况。【其中其中126、234同理也有各有同理也有各有6种情况种情况】对于对于225来说,连抛三次可以有来说,连抛三次可以有(2,2,5)、()、(2,5,2)、()、(5,2,2)共三种情况,)共三种情况,【其中其中1

20、44同理也有同理也有3种情况种情况】对于对于333来说,只有来说,只有1种情况。种情况。因此,抛掷三次和为因此,抛掷三次和为9的事件总数的事件总数N3*63*2125种种故故 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例3:用三种不同的颜色给图中的用三种不同的颜色给图中的3个矩形个矩形随机涂色随机涂色,每个矩形只能涂一种颜色每个矩形只能涂一种颜色,求求(1)3个矩形的颜色都相同的概率个矩形的颜色都相同的概率;(2)3个矩形的颜色都不同的概率个矩形的颜色都不同的概率.解解:本题的等可能基本事件共有本题的等可能基本事件共有27个

21、个(1)(1)同一颜色的事件记为同一颜色的事件记为A,P(A)=3/27=1/9;A,P(A)=3/27=1/9;(2)(2)不同颜色的事件记为不同颜色的事件记为B,P(B)=6/27=2/9B,P(B)=6/27=2/9为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能思考思考:甲甲,乙两人做掷色子游戏乙两人做掷色子游戏,两人各掷一次两人各掷一次,谁掷得的点数多谁就获胜谁掷得的点数多谁就获胜.求甲获胜的概率求甲获胜的概率.5/12五件产品中有两件次品五件产品中有两件次品,从中任取两件来检验从中任取两件来检验.(1)一共有多少种不同的

22、结果一共有多少种不同的结果?(2)两件都是正品的概率是多少两件都是正品的概率是多少?(3)恰有一件次品的概率是多少恰有一件次品的概率是多少?10种种3/103/53张彩票中有一张奖票张彩票中有一张奖票,2人按一定的顺序从中人按一定的顺序从中各抽取一张各抽取一张,则则:(1)第一个人抽得奖票的概率是第一个人抽得奖票的概率是_;(2)第二个人抽得奖票的概率是第二个人抽得奖票的概率是_.1/31/3为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能求古典概型概率的步骤求古典概型概率的步骤:求基本事件的总数求基本事件的总数;求事件求事件A A包含的基本事件的个数包含的基本事件的个数;代入计算公式:代入计算公式:小结小结 在解决古典概型问题过程中,要注意利用数形在解决古典概型问题过程中,要注意利用数形结合、建立模型、符号化、形式化等数学思想解题结合、建立模型、符号化、形式化等数学思想解题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁