《人教版小学数学知识点总结(6年级全)(74页).doc》由会员分享,可在线阅读,更多相关《人教版小学数学知识点总结(6年级全)(74页).doc(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-第 1 页人教版小学数学知人教版小学数学知识点总结识点总结(6 年级全年级全)-第 2 页小学数学知识点总结-人教版一年级上册一、学习目标:1.通过数数活动,使学生知道“同样多”的含义;初步学会用“一一对应”的方法比较物体的多少,知道“多”、“少”的含义;2.使学生会用 15 各数表示物体的个数,知道 15 的数序,能认读 15 各数,建立初步的数感;3.使学生能够认识长方体、正方体、圆柱、球等物体和图形,能够识别这几种物体和图形,初步理解相关概念的意义;4.初步感知分类的意义,通过操作学会分类的方法;5.通过观察、操作、演示,使学生熟练地数出 6-10 这几个数字,会读、会写,并会用这些数
2、表示物体的个数或事物的顺序和位置,会比较它们的大小;6.知道钟面上有时针、分针、12 个数、12 大格二、重难点:1.知道“多”、“少”的含义;2.使学生会用 16 各数表示物体的个数;3.认识长方体、正方体、圆柱、球等物体和图形,能够识别这几种物体和图形,初步理解相 4.关概念的意义;5.学会分类的方法;6.培养学生的操作能力、观察能力、判断能力、语言表达能力;7.初步建立时间概念三、知识点概括总结:1.数一数:-第 3 页2.比一比:草莓比香蕉多(1)个。比长短:比高矮:戴眼镜穿蓝色上衣的叔叔要比戴眼镜穿黄色上衣的叔叔高。-第 4 页、3.第几:4.几和几:5.比大小:533r;P 在O
3、上,PO=r;P 在O 内,0PO8.百分数的由来:200 多年前,瑞士数学家欧拉,在通用算术一书中说,要想把 7 米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3 米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以 100 做基数,发明了百分数。小学数学知识点总结-人教版六年级下册一、学习目标:1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系;3.使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和
4、高;4.使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算;5.使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题;6.使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例;7.通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。二、学习难点:1.负数的意义;2.圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式;3.圆柱、圆锥体积的计算公式的推导;4.比例的意义和基本性质;5.应用比的基本性质判段两个数能否成比例,并正确的组成比例。三、知识点归纳总结:1.负数:负数是数学术语,指小于 0 的实数,如-3.任何正数前加上负号都等于负数
5、。在数轴线上,负数都在 0 的左侧,所有的负数都比自然数小。负数用负号“-”标记,如-2,-5.33,-45,-0.6 等。2.正数:大于 0 的数叫正数(不包括 0)若一个数大于零(0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。-第 38 页3.正数的几何意义:数轴上 0 右边的数叫做正数4.数轴:规定了原点,正方向和单位长度的直线叫数轴。所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。5.数轴的三要素:原点、单位长度、正方向。6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。如下图所
6、示:即 AG 矩形的一条边为轴,旋转 360所得的几何体就是圆柱。其中 AG 叫做圆柱的轴,AG 的长度叫做圆柱的高,所有平行于 AG 的线段叫做圆柱的母线,DA 和DG 旋转形成的两个圆叫做圆柱的底面,DD旋转形成的曲面叫做圆柱的侧面。7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为 r,高为 h,则体积 V:V=rh;如 S 为底面积,高为 h,体积为 V:V=Sh8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S 侧=Ch(注:c 为d)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。特征:圆柱的底
7、面都是圆,并且大小一样。9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。如下图所示:11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的 1/3。根据圆柱体积公式 V=Sh(V=rh),得出圆锥体积公式:V=1/3ShS 是圆锥的底面积,h 是圆锥的高,r 是圆锥的底面半径-第 39 页12.圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。
8、(如右图)在绘制指定圆锥的展开图时,一般知道 a(母线长)和 d(底面直径)13.圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。圆锥的表面积由侧面积和底面积两部分组成。S=R2(n/360)+r2或(1/2)R2+r2(此 n 为角度制,为弧度制,=(n/180)14.圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。底面积和高不相等的圆柱圆锥不相等。15.生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或
9、缺的。16.比的意义:(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。17.比的性质:比的前项和后项同时乘上或者除以相同的数(0 除外),比值不变,这叫做比的基本性质。18.求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,
10、也可以是小数或分数。根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。-第 40 页19.比例尺:图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。20.按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。21.比例的意义:比例的意义表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两
11、端的两项叫做外项,中间的两项叫做内项。22.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。23.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。24.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示 y/x=k(一定)25.成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系
12、叫做反比例关系。用字母表示 xy=k(一定)26.统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。27.统计组成部分:一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。28.统计种类:单式统计表:只含有一个项目的统计表。复式统计表:含有两个或两个以上统计项目的统计表。百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。29.统计表制作步骤:(1)搜集数据(2)整理数据:要根据制表的目的和统计的内容,对数据进行分类。(3)设计草表:要根据统计的目的
13、和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。(4)正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。30.统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。31.条形统计图:(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。(3)取一个单位长度表示数量的多少要根据具体情况而确定(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注-第 41
14、页明图例。(5)制作条形统计图的一般步骤:a)根据图纸的大小,画出两条互相垂直的射线。b)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。d)按照数据的大小画出长短不同的直条,并注明数量。32.折线统计图:(1)用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。(2)优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。(3)制作折线统计图的一般步骤:a)根据图纸的
15、大小,画出两条互相垂直的射线。b)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。d)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。33.扇形统计图:(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。(2)优点:很清楚地表示出各部分同总数之间的关系。(3)制扇形统计图的一般步骤:a)先算出各部分数量占总量的百分之几。b)再算出表示各部分数量的扇形的圆心角度数。c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。d)在每个扇形中标明所表示的各部分数量名称和所占的
16、百分数,并用不同颜色或条纹把各个扇形区别开。扩展资料:1.负数的由来:人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。2.负数的应用:负数可以广泛应用于温度、楼层、海拔、水位、盈利、增产/减产、支出/收入、得分/扣分等等的这些方面中3.负数加减乘除的计算法则:+:负数 1+负数 2=-|负数 1+负数 2|=负数负数+正数=符号取绝对值较大的加数的符号,数值取“用较大的绝对值减去较小的绝
17、对值”的所得值-:负数 1-负数 2=负数 1+|负数 2|=负数 1 加上负数 2 的相反数,再按负数加正数的方法算负数-正数=-|正数+负数|=负数异号两数相减,等于其绝对值相加:负数 1负数 2=|负数 1负数 2|=正数负数正数=-|正数负数|=负数:负数 1负数 2=|负数 1负数 2|=正数负数正数=-|负数正数|=负数总得来说,就是同数相除等于正数,异数相除等于负数。-第 42 页4.正数和正整数的区别:正数包括:正整数、正分数(包括正小数)。(且正数不包括 0)辨析:零(0)既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数
18、量.正整数、负整数、正分数、负分数和零(0)统称有理数。意义(1)从原点出发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。(2)在数轴上表示的两个数,正方向的数大于负方向的数。(3)正数都大于 0,负数都小于 0,正数大于一切负数。注:单位长度则是指取适当的长度作为单位长度,比如可以取 2m 作为单位长度“1”,那么 4m 就表示 2 个单位长度。5.直圆柱:直圆柱也叫正圆柱、圆柱,可以看成是以矩形的一边所在直线为轴、其余各边绕轴旋转而成的曲面所围成的几何体。6.圆锥的其它概念:(1)圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;(2
19、)圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长*母线/2;没展开时是一个曲面。(3)圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。7.圆锥的三视图:圆锥三视图是观测者从三个不同位置观察而画出的图形。其主视图和侧视图均为等腰三角形,俯视图是一个圆和圆心。求比较数应用题公式标准数分(百分)率=与分率对应的比较数;标准数增长率=增长数;标准数减少率=减少数;标准数(两分率之和)=两个数之和;标准
20、数(两分率之差)=两个数之差。求分率、百分率问题的公式比较数标准数=比较数的对应分(百分)率;增长数标准数=增长率;减少数标准数=减少率。或者是两数差较小数=多几(百)分之几(增);两数差较大数=少几(百)分之几(减)。行船问题公式(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)2=船速;(顺水速度-逆水速度)2=水速。-第 43 页(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。(求出两船距离缩小或拉大速度后,再
21、按上面有关的公式去解答题目)。常用长度单位换算:1 公里=1 千米1 千米=1000 米(1km=1000m)1 米=10 分米(1m=10dm)1 分米=10 厘米(1dm=10cm)1 厘米=10 毫米(1cm=10mm)1 米=100 厘米(1m=100cm)常用的体积单位换算什么是体积?体积就是物体所占空间的大小。什么是容积?箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。1 立方米=1000 立方分米 1m=1000dm1 立方分米=1000 立方厘米 1dm=1000cm常用的容积单位换算1 升=1000 毫升 1L=1000dm1 升=1 立方米 1L=1m1 毫升=1
22、 立方厘米 1ml=1cm流水问题公式:流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)2水流速度=(顺流速度-逆流速度)2什么是盈亏问题?是在等分除法的基础上发展起来的。它的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或者两次都有余,或两次都不足),已知所余和不足的数量,求物品数量和参加分配人数的问题,叫做盈亏问题。盈亏问题公式:(1)一次有余(盈),一次不够(亏),可
23、用公式:(盈+亏)(两次每人分配数的差)=人数。例如,“小朋友分桃子,每人 10 个少 9 个,每人 8 个多 7 个。问:有多少个小朋友和多少个桃子?”解(7+9)(10-8)=162=8(个)人数108-9=80-9=71(个)桃子或 88+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)(两次每人分配数的差)=人数。-第 44 页例如,“士兵背子弹作行军训练,每人背 45 发,多 680 发;若每人背 50 发,则还多 200 发。问:有士兵多少人?有子弹多少发?”解(680-200)(50-45)=4805=96(人)4596+680=5000(发)或
24、5096+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)(两次每人分配数的差)=人数。例如,“将一批本子发给学生,每人发 10 本,差 90 本;若每人发 8 本,则仍差 8 本。有多少学生和多少本本子?”解(90-8)(10-8)=822=41(人)1041-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏(两次每人分配数的差)=人数。(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈(两次每人分配数的差)=人数。方阵问题公式(1)实心方阵:(外层每边人数)2=总人数。(2)空心方阵:(最外层每边人数)2-(最外层每边人数-
25、2层数)2=中空方阵的人数。或者是(最外层每边人数-层数)层数4=中空方阵的人数。总人数4层数+层数=外层每边人数。例如,有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解一先看作实心方阵,则总人数有1010=100(人)再算空心部分的方阵人数。从外往里,每进一层,每边人数少 2,则进到第四层,每边人数是10-23=4(人)所以,空心部分方阵人数有44=16(人)故这个空心方阵的人数是100-16=84(人)解二直接运用公式。根据空心方阵总人数公式得(10-3)34=84(人)归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量
26、”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】1 份数量份数=总量总量1 份数量=份数-第 45 页总量另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。例:服装厂原来做一套衣服用布 3.2 米,改进裁剪方法后,每套衣服用布 2.8 米。原来做 791 套衣服的布,现在可以做多少套?答:现在可以做 904 套。鸡兔同笼问题公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=
27、鸡数;总头数-鸡数=兔数。例如,“有鸡、兔共 36 只,它们共有脚 100 只,鸡、兔各是多少只?”解一(100-236)(4-2)=14(只)兔;6-14=22(只)鸡。解二(436-100)(4-2)=22(只)鸡;36-22=14(只)兔。(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数
28、总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1 只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记 4 分,每生产一个不合格品不仅不记分,还要扣除 15 分。某工人生产了 100
29、0 只灯泡,共得 3525 分,问其中有多少个灯泡不合格?”解一(41000-3525)(4+15)=47519=25(个)解二 1000-(151000+3525)(4+15)=1000-1852519=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:-第 46 页(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数;(两次总脚数之和)(每只鸡兔脚数之和)
30、-(两次总脚数之差)(每只鸡兔脚数之差)2=兔数。例如,“有一些鸡和兔,共有脚 44 只,若将鸡数与兔数互换,则共有脚 52 只。鸡兔各是多少只?”解(52+44)(4+2)+(52-44)(4-2)2=202=10(只)鸡(52+44)(4+2)-(52-44)(4-2)2=122=6(只)兔(答略)列车过桥问题公式(桥长+列车长)速度=过桥时间;(桥长+列车长)过桥时间=速度;速度过桥时间=桥、车长度之和。时间单位换算:1 世纪=100 年 1 年=12 月大月(31 天)有:135781012 月小月(30 天)的有:46911 月平年 2 月 28 天,闰年 2 月 29 天平年全年
31、365 天,闰年全年 366 天1 日=24 小时 1 时=60 分1 分=60 秒 1 时=3600 秒人民币单位换算1 元=10 角1 角=10 分1 元=100 分利润与折扣公式:利润=售出价-成本利润率=利润成本100%=(售出价成本-1)100%涨跌金额=本金涨跌百分比折扣=实际售价原售价100%(折扣1)利息=本金利率时间税后利息=本金利率时间(1-20%)行程问题公式:行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。一般行程问题公式:平均
32、速度时间=路程;路程时间=平均速度;路程平均速度=时间。同向行程问题公式同时相向而行:路程=速度和时间同时相向而行:相遇时间=速度和时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。-第 47 页同时同地同向而行(速度慢的在后,快的在前):路程=速度差时间。反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:(速度和)相遇(离)时间=相遇(离)路程;相遇(离)路程(速度和)=相遇(离)时间;相遇(离)路程相遇(离)时间=速度和。植树问题公式:什么是植树问题?这类应用题是以“植树”为内容。
33、凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。1、非封闭线路上的植树问题主要可分为以下三种情形:如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长株距+1全长=株距(株数-1)株距=全长(株数-1)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长株距全长=株距株数株距=全长株数如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长株距-1全长=株距(株数+1)株距=全长(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长株距全长=株距株数株距=全长株数求标准数应用题公式比较数与比较数对应的分(百分)率=标准数;增长数增长率=
34、标准数;减少数减少率=标准数;两数和两率和=标准数;两数差两率差=标准数;归一问题归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。归一问题可以分为直进归一,返回归一两种.在一些实际问题中,常常要先算出一个单位的数量是多少,然后求所需求的问题。(1)直进归一.3 支铅笔要 4 角 8 分,买同样的 5 支铅笔要多少钱?需先求买 1 支铅笔要几分,再求买 5 支铅笔要多少钱.列式为:4835=80(分).(2)返回归一(逆归一).-第 48 页例如:“一辆汽车 4 小时行 120 千米,照这样计算,行 180 千米要用几小时?”先
35、求平均 1 小时行多少千米,再求行 180 千米要几小时.列式为:180(1204)=18030=6(时).(3)两次归一.例如:“2 台拖拉机 4 天耕地 32 公顷,照这样计算,5 台拖拉机 7 天耕地多少公顷?”先求 1 台拖拉机 1 天耕地多少公顷,再求 5 台拖拉机 7 天耕地多少公顷.列式为:322457=140(公顷).工程问题公式(1)一般公式:工效工时=工作总量;工作总量工时=工效;工作总量工效=工时。(2)用假设工作总量为“1”的方法解工程问题的公式:1工作时间=单位时间内完成工作总量的几分之几;1单位时间能完成的几分之几=工作时间。(注意:用假设法解工程题,可任意假定工作
36、总量为 2、3、4、5。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)常用质量单位:吨 t千克 kg克 g常用质量换算:1 吨=1000 千克1 千克=1000 克1 千克=1 公斤常用面积单位换算:1 平方千米=100 公顷 1km=100hm1 公顷=10000 平方米 1hm=10000m1 平方米=100 平方分米 1m=100dm1 平方分米=100 平方厘米 1dm=100cm1 平方厘米=100 平方毫米 1cm=100mm浓度问题公式:溶质的重量+溶剂的重量=溶液的重量溶质的重量溶液的重量100%=浓度溶液的
37、重量浓度=溶质的重量溶质的重量浓度=溶液的重量相遇问题公式:相遇路程=速度和相遇时间相遇时间=相遇路程速度和速度和=相遇路程相遇时间什么是和差问题?已知大小两个数的和,以及了们的差,求这两个数各是多少的应用题叫做和差问题。什么是和倍问题?已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题叫做和倍问题。什么是差倍问题?已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题叫做差倍问题。-第 49 页什么是平均数?平均数是指在一组数据中所有数据之和再除以数据的个数。和差问题的公式(和+差)2=大数(和-差)2=小数和倍问题和(倍数-1)=小数小数倍数=大数(或者 和-小数=大数)差
38、倍问题差(倍数+1)=大数小数倍数=大数(或 小数+差=大数)平均数问题公式总数量总份数=平均数。一、小学数学几何形体周长 面积 体积计算公式长方形的周长=(长+宽)2 C=(a+b)2正方形的周长=边长4 C=4a长方形的面积=长宽 S=ab正方形的面积=边长边长 S=a.a=a三角形的面积=底高2 S=ah2平行四边形的面积=底高 S=ah梯形的面积=(上底+下底)高2 S=(ab)h2直径=半径2 d=2r 半径=直径2 r=d2圆的周长=圆周率直径=圆周率半径2 c=d=2r圆的面积=圆周率半径半径三角形的面积底高2。公式 S=ah2正方形的面积边长边长 公式 S=aa长方形的面积长宽
39、 公式 S=ab平行四边形的面积底高 公式 S=ah梯形的面积(上底+下底)高2 公式 S=(a+b)h2内角和:三角形的内角和180 度。长方体的体积长宽高 公式:V=abh长方体(或正方体)的体积底面积高 公式:V=abh正方体的体积棱长棱长棱长 公式:V=aaa圆的周长直径 公式:Ld2r圆的面积半径半径 公式:Sr圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=dh2rh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2r圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh圆锥的体积1/3 底面积高。公式:V=1/
40、3Sh-第 50 页分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。方阵问题公式(1)实心方阵:(外层每边人数)2=总人数。(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2层数)2=中空方阵的人数。或者是(最外层每边人数-层数)层数4=中空方阵的人数。总人数4层数+层数=外层每边人数。例如,有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解一先看作实心方阵,则总人数有1010=100(人)再算空心部分的方阵人数。从外往里
41、,每进一层,每边人数少 2,则进到第四层,每边人数是10-23=4(人)所以,空心部分方阵人数有44=16故这个空心方阵的人数是100-16=84(人)解二直接运用公式。根据空心方阵总人数公式得(10-3)34=84(人)利率问题公式利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。(1)单利问题:本金利率时期=利息;本金(1+利率时期)=本利和;本利和(1+利率时期)=本金。年利率12=月利率;月利率12=年利率。(2)复利问题:本金(1+利率)存期期数=本利和。例如,“某人存款 2400 元,存期 3 年,月利率为 102(即月利 1 分零 2 毫),三年到期后,本利和共是
42、多少元?”解(1)用月利率求。3 年=12 月3=36 个月2400(1+10236)=240013672=328128(2)用年利率求。先把月利率变成年利率:10212=1224-第 51 页再求本利和:2400(1+12243)=240013672=328128(元)(答略)一、小学数学图形计算公式:1.长方形的周长=(长+宽)2,C=(a+b)22.正方形的周长=边长4,C=4a3.长方形的面积=长宽,S=ab4.正方形的面积=边长边长,S=a*a=a5.三角形的面积=底高2,S=ah26.平行四边形的面积=底高,S=ah7.梯形的面积=(上底+下底)高2,S=(a+b)h28.直径=半
43、径2,d=2r,半径=直径2,r=d29.圆的周长=圆周率直径=圆周率半径2,c=d=2r10.圆的面积=圆周率半径半径,S=r211.长方体的表面积=(长宽+长高+宽高)212.长方体的体积=长宽高,V=abh13.正方体的表面积=棱长棱长6,S=6a214.正方体的体积=棱长棱长棱长,V=a*a*a=a315.圆柱的侧面积=底面圆的周长高,S=ch16.圆柱的表面积=上下底面面积+侧面积S=2r+2rh=2(d2)+2(d2)h=2(C2)+Ch17.圆柱的体积=底面积高,V=Sh,V=rh=(d2)h=(C2)h18.圆锥的体积=底面积高3,V=Sh3=r h3=(d2)h3=(C2)h
44、3二、具体情景问题:1.和差问题:(和+差)2=大数,(和-差)2=小数2.和倍问题:和(倍数-1)=小数,小数倍数=大数(或者 和-小数=大数)3.差倍问题:差(倍数-1)=小数,小数倍数=大数(或 小数+差=大数)4.植树问题:(1)非封闭线路上的植树问题主要可分为以下三种情形:a.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长株距-1全长=株距(株数-1)株距=全长(株数-1)b.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长株距全长=株距株数株距=全长株数c.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长株距-1全长=株距(株数+1)株距
45、=全长(株数+1)-第 52 页(2)封闭线路上的植树问题的数量关系如下:株数=段数=全长株距全长=株距株数株距=全长株数5.盈亏问题:(盈+亏)两次分配量之差=参加分配的份数(大盈-小盈)两次分配量之差=参加分配的份数(大亏-小亏)两次分配量之差=参加分配的份数6.相遇问题:相遇路程=速度和相遇时间相遇时间=相遇路程速度和速度和=相遇路程相遇时间7.追及问题:追及距离=速度差追及时间追及时间=追及距离速度差速度差=追及距离追及时间8.流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)2水流速度=(顺流速度-逆流速度)29.浓度问题:溶质的重量+
46、溶剂的重量=溶液的重量溶质的重量溶液的重量100%=浓度溶液的重量浓度=溶质的重量溶质的重量浓度=溶液的重量10.利润与折扣问题:利润=售出价-成本利润率=利润成本100%=(售出价成本-1)100%涨跌金额=本金涨跌百分比折扣=实际售价原售价100%(折扣m,那么必有一个抽屉至少有:k=n/m+1 个物体:当 n 不能被 m 整除时。k=n/m 个物体:当 n 能被 m 整除时。理解知识点:X表示不超过 X 的最大整数。例4.351=4;0.321=0;2.9999=2;关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。11定义新运算定义新运算基本概念:定义一
47、种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。关键问题:正确理解定义的运算符号的意义。注意事项:新的运算不一定符合运算规律,特别注意运算顺序。每个新定义的运算符号只能在本题中使用。12数列求和数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。基本概念:首项:等差数列的第一个数,一般用 a1 表示;项数:等差数列的所有数的个数,一般用 n 表示;公差:数列中任意相邻两个数的差,一般用 d 表示;通项:表示数列中每一个数的公式,一般用 a
48、n 表示;数列的和:这一数列全部数字的和,一般用 Sn 表示-第 63 页基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。基本公式:通项公式:an=a1+(n1)d;通项首项(项数一 1)公差;数列和公式:sn,=(a1+an)n2;数列和(首项末项)项数 2;项数公式:n=(an+a1)d1;项数=(末项-首项)公差1;公差公式:d=(ana1)(n1);公差=(末项首项)(项数1);关键问题:确定已知量和未知量,确定使用的公式;13二进制及其应用二进制及其应用十进制:
49、用 09 十个数字表示,逢 10 进 1;不同数位上的数字表示不同的含义,十位上的 2 表示20,百位上的 2 表示 200。所以 234=200+30+4=2102+310+4。=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+A3102+A2101+A1100注意:N0=;N=N(其中 N 是任意自然数)二进制:用 01 两个数字表示,逢 2 进 1;不同数位上的数字表示不同的含义。(2)=An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7+A322+A221+A120注
50、意:An 不是 0 就是 1。十进制化成二进制:根据二进制满 2 进 1 的特点,用 2 连续去除这个数,直到商为 0,然后把每次所得的余数按自下而上依次写出即可。先找出不大于该数的 2 的 n 次方,再求它们的差,再找不大于这个差的 2 的 n 次方,依此方法一直找到差为 0,按照二进制展开式特点即可写出。14加法乘法原理和几何计数加法乘法原理和几何计数-第 64 页加法原理:如果完成一件任务有 n 类方法,在第一类方法中有 m1 种不同方法,在第二类方法中有m2 种不同方法,在第 n 类方法中有 mn 种不同方法,那么完成这件任务共有:m1+m2.+mn种不同的方法。关键问题:确定工作的分