《江苏省扬州市邗江区美琪学校九年级数学下册《6.5 二次函数的应用》学案2(无答案) 苏科版.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市邗江区美琪学校九年级数学下册《6.5 二次函数的应用》学案2(无答案) 苏科版.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、6.5 二次函数的应用学习目标: 1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。2、运用二次函数的知识求出实际问题的最大值、最小值。学习重点:应用二次函数最值解决实际问题。一、自学展示:1、如图所示的抛物线的解析式可设为 ,若ABx轴,且AB=4,OC=1,则点A的坐标为 ,点B的坐标为 ;代入解析式可得出此抛物线的解析式为 。2、 某涵洞是抛物线形,它的截面如图所示。现测得水面宽AB=4m,涵洞顶点O到水面的距离为1m,于是你可推断点A的坐标是 ,点B的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。二、探索学习:例1、某涵洞是抛物线形,它的截面如图
2、所示,现测得水面宽16m,涵洞顶点O到水面的距离为24m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?例2、河上有一座抛物线拱桥,已知桥下的水面离桥孔顶部3米时,水面宽为6米。当水位上升1米时,水面宽为多少?(精确到0.1米)例3、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。三、课堂整理四、当堂练习1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=,当水位线在AB位置时,水面宽 AB = 30米,这时水面离桥顶的高度h是多少? 2、 一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB1.6 m时,涵洞顶点与水面的距离为2.4 m这时,离开水面1.5 m处,涵洞宽ED是多少?是否会超过1 m?4、如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?3