《江苏省扬州市邗江区美琪学校九年级数学下册《6.5 二次函数的应用》学案1(无答案) 苏科版.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市邗江区美琪学校九年级数学下册《6.5 二次函数的应用》学案1(无答案) 苏科版.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、6.5 二次函数的应用学习目标:1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。2、运用二次函数的知识求出实际问题的最大值、最小值。学习重点:应用二次函数最值解决实际问题中的最大利润。一、自学展示1、如图一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是,问此运动员把铅球推出多远?二、探索学习1、如图,某喷灌设备的喷头B高出地面1.2米,如果喷出的抛物线形水流的水平距离x (米)与高度y(米)之间的关系为二次函数y=a(x-4)2+2.求水流落地点D与喷头底部O的距离(精确到0.1米)2、如图,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,柱
2、高1.25米,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度225m(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为35m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到01m)三、课堂整理四、当堂练习1、一个运动员推铅球,铅球刚出手时离地面m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式你能解决吗?试一试2、橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?2、一场篮球赛中,小明跳起投篮,已知球出手时离地面高 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。问此球能否投中?在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?2