《新课标高一数学平面向量基本定理.ppt》由会员分享,可在线阅读,更多相关《新课标高一数学平面向量基本定理.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、平面向量基本定理平面向量基本定理2021/8/8 星期日11、向量加法的平行四边形、向量加法的平行四边形法则法则2、共线向量的基本定理、共线向量的基本定理回顾回顾2021/8/8 星期日2 设设 、是同一平面内的两个不共是同一平面内的两个不共线的向量,线的向量,a 是这一平面内的任一向量,是这一平面内的任一向量,我们研究我们研究 a 与与 、之间的关系。之间的关系。a研究研究2021/8/8 星期日3OC=OM+ON=OC=OM+ON=OA+OBOA+OB即即 a=+.=+.aA AO OaC CB BN NM M M MN N2021/8/8 星期日4平面向量基本定理 一向量 a 有且只有一
2、对实数 、使共线向量,那么对于这一平面内的任 如果 、是同一平面内的两个不a=+这一平面内所有向量的一组基底。我们把不共线的向量 、叫做表2021/8/8 星期日5(1)一组平面向量的基底有多少对?(有无数对)思考E EF F F FA AN NB BaM MO OC CN NM MM MO OC CN NaE E2021/8/8 星期日6思考 (2)若基底选取不同,则表示同一 向量的实数 、是否相同?(可以不同,也可以相同)O OC CF FM MN NaE E E EA AB BN NOC=2OB+ON OC=2OB+ON OC=2OA+OEOC=2OA+OEOC=OF+OE OC=OF+
3、OE 2021/8/8 星期日7特别的,若特别的,若 a=0,则有且只有,则有且只有:可使可使 0=+.=0?若若 与与 中只中只有一个为零,情有一个为零,情况会是怎样?况会是怎样?特别的,若特别的,若a与与 ()共线,则有)共线,则有 =0(=0),使得),使得:a=+.2021/8/8 星期日8已知向量 求做向量-2.5 +3 例1:、OABC2021/8/8 星期日9OABC例2D DC CB BA AM M2021/8/8 星期日10 例3、如图,已知梯形ABCD,AB/CD,且AB=2DC,M,N分别是DC,AB的中点.请大家动手,在图中确定一组基底,将其他向量用这组基底表示出来。A
4、NMCDB2021/8/8 星期日11解析:BC=BD+DC=MN=DN-DM =(AN-AD)-DC(ADAB)+DCANMCDBDC=AB=设AB=,AD=,则有:=-.=-+=-+2021/8/8 星期日12 评析评析 能够在具体问题中适当地选取基底,使其他向量能够用基底来表示,再利用有关知识解决问题。2021/8/8 星期日13 例4.ABCD中,E、F分别是DC和AB的中点,试判断AE,CF是否平行?FBADCE2021/8/8 星期日14FBADCEE、F分别是DC和AB的中点,AE=AD+DE =b+aCF=CB+BF=-b-aAE=-CFAE与CF共线,又无公共点AE,CF平行
5、.解:设AB=a,AD=b.2021/8/8 星期日15 设 a、b是两个不共线的向量,已知AB=2a+kb,CB=a+3b,CD=2a b,若A.B.D三点共线,求k的值.A、B、D三点共线解:AB与BD共线,则存在实数使得AB=BD.使得AB=BD.思考思考由于BD=CD CB =(2a b)(a+3b)=a 4b则需 2a+kb=(a 4b)由向量相等的条件得2=k=4k=8.2021/8/8 星期日16则需 2a+kb=(a 4b)2-=0k 4 =0此处可另解:k=8.即(2-)a+(k-4 )b=02021/8/8 星期日17 本题在解决过程中用到了两向量共线的充要条件这一定理,并
6、借助平面向量的基本定理减少变量,除此之外,还用待定系数法列方程,通过消元解方程组。这些知识和考虑问题的方法都必须切实掌握好。评析评析2021/8/8 星期日18 1.平面向量基本定理可以联系物理学中的力的分平面向量基本定理可以联系物理学中的力的分解模型来理解,它说明在同一平面内任一向量都可解模型来理解,它说明在同一平面内任一向量都可以表示为不共线向量的线性组合,该定理是平面向以表示为不共线向量的线性组合,该定理是平面向量坐标表示的基础,其本质是一个向量在其他两个量坐标表示的基础,其本质是一个向量在其他两个向量上的分解。向量上的分解。课堂总结课堂总结 2.2.在实际问题中的指导意义在于找到表示一
7、个在实际问题中的指导意义在于找到表示一个平面所有向量的一组基底(不共线向量平面所有向量的一组基底(不共线向量 与与 ),),从而将问题转化为关于从而将问题转化为关于 、的相应运算。的相应运算。2021/8/8 星期日19 总结:1、平面向量基本定理内容2、对基本定理的理解(1)实数对1、的存在性和唯一性()基底的不唯一性()定理的拓展性、平面向量基本定理的应用求作向量、解(证)向量问题、解(证)平面几何问题2021/8/8 星期日20思考思考 在梯形在梯形ABCDABCD中,中,E E、F F分别时分别时ABAB、CDCD的中点,用向量的方法证明:的中点,用向量的方法证明:EF/AD/BC,EF/AD/BC,且且EF=(AD+BC)EF=(AD+BC)2021/8/8 星期日212021/8/8 星期日222021/8/8 星期日23