《练习《离散型随机变量及其分布列》单元测试(共4页).doc》由会员分享,可在线阅读,更多相关《练习《离散型随机变量及其分布列》单元测试(共4页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上离散型随机变量单元练习(一)一、选择题:1、如果是一个离散型随机变量,则假命题是( )A. 取每一个可能值的概率都是非负数;B. 取所有可能值的概率之和为1;C. 取某几个值的概率等于分别取其中每个值的概率之和;D. 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2某寻呼台一小时内收到的寻呼次数;在区间内随机的取一个数;某超市一天中的顾客量 其中的是离散型随机变量的是( )A;B;C;D3、设离散型随机变量的概率分布如下,则的值为( )X1234PABCD4、设随机变量的分布列为,则的值为( )A1; B; C; D5、已知随机变量的分布列为:,则=( )A
2、. B. C. D. 6、设随机变量等可能取1、2、3.值,如果,则值为( )A. 4 B. 6 C. 10 D. 无法确定7、投掷两枚骰子,所得点数之和记为,那么表示的随机实验结果是( )A. 一枚是3点,一枚是1点 B. 两枚都是2点 C. 两枚都是4点 D. 一枚是3点,一枚是1点或两枚都是2点8、设随机变量的分布列为,则的值为( )A1; B; C; D二、填空题:9 、下列表中能成为随机变量的分布列的是 (把全部正确的答案序号填上)-1010.30.40.41230.40.7-0.150-50.30.60.1 10、已知为离散型随机变量,的取值为,则的取值为 11、一袋中装有5只同样
3、大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数可能取值为 三、解答题:12、某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计)从这个城市的民航机场到某宾馆的路程为15km某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费关于行车路程的关系式;(2)已知某旅客实付租车
4、费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?13、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得1分,试写出从该盒中取出一球所得分数的分布列14、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止设分裂次终止的概率是(=1,2,3,)记为原物体在分裂终止后所生成的子块数目,求.离散型随机变量单元练习(二)1.人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:
5、(1)第次拨号才接通电话;(2)拨号不超过次而接通电话.2.出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数的期望和方差。3.奖器有个小球,其中个小球上标有数字,个小球上标有数字,现摇出个小球,规定所得奖金(元)为这个小球上记号之和,求此次摇奖获得奖金数额的数学期望4某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,问一次考试中()三科成绩均未获得第一名的概率是多少?()恰有一科成绩未获得第一名的概率是多少5如图,两点之间
6、有条网线并联,它们能通过的最大信息量分别为.现从中任取三条网线且使每条网线通过最大的信息量. (I)设选取的三条网线由到可通过的信息总量为,当时,则保证信息畅通.求线路信息畅通的概率; (II)求选取的三条网线可通过信息总量的数学期望.6三个元件正常工作的概率分别为将它们中某两个元件并联后再和第三元件串联接入电路.()在如图的电路中,电路不发生故障的概率是多少?()三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.7要制造一种机器零件,甲机床废品率为,而乙机床废品率为,而它们的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:(1)其中至少有一件废品
7、的概率;(2)其中至多有一件废品的概率. 8甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为,被甲或乙解出的概率为,(1)求该题被乙独立解出的概率;(2)求解出该题的人数的数学期望和方差9某保险公司新开设了一项保险业务,若在一年内事件发生,该公司要赔偿元设在一年内发生的概率为,为使公司收益的期望值等于的百分之十,公司应要求顾客交多少保险金?10有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字)11高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:按“单打、双打、单打”顺序进行三盘比赛; 代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为()根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?()高三(1)班代表队连胜两盘的概率是多少? 专心-专注-专业