《高二数学选修三各章节的知识点总结归纳.docx》由会员分享,可在线阅读,更多相关《高二数学选修三各章节的知识点总结归纳.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学选修三各章节的知识点总结归纳高二数学选修三各章节的知识点总结1一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断:对应法则;定义域(两点必须同时具备)(1)函数解析式的求法:定义法(拼凑):换元法:待定系数法:赋值法:(2)函数定义域的求法:含参问题的定义域要分类讨论;对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法:配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解
2、,型如:;换元法:通过变量代换转化为能求值域的函数,化归思想;三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;基本不等式法:转化成型如:,利用平均值不等式公式来求值域;单调性法:函数为单调函数,可根据函数的单调性求值域。数形结合:根据函数的几何图形,利用数型结合的方法来求值域。高二数学选修三各章节的知识点总结2一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜
3、率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直
4、线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)一般式:(A,B不全为0)注意:1各式的适用范围2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(4)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。(5)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(6)两条直线的交点相交:交点坐标即方程组
5、的一组解。方程组无解;方程组有无数解与重合(7)两点间距离公式:设是平面直角坐标系中的两个点,则(8)点到直线距离公式:一点到直线的距离(9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。高二数学选修三各章节的知识点总结3函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)y=f(x+a),y=f(x)+b注意:()有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。()会结合向量的平移,理解按照向量(m,n)平移的意义。对称变换y=f(x)y=f(-x),关于y轴对称y=f(x)y=-f(x),关于x轴对称y=f(x)y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)伸缩变换:y=f(x)y=f(x),y=f(x)y=Af(x+)具体参照三角函数的图象变换。