高中三角函数诱导公式知识点总结.docx

上传人:有**** 文档编号:67440234 上传时间:2022-12-24 格式:DOCX 页数:4 大小:38.62KB
返回 下载 相关 举报
高中三角函数诱导公式知识点总结.docx_第1页
第1页 / 共4页
高中三角函数诱导公式知识点总结.docx_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《高中三角函数诱导公式知识点总结.docx》由会员分享,可在线阅读,更多相关《高中三角函数诱导公式知识点总结.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中三角函数诱导公式知识点总结高中三角函数诱导公式知识1公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)=sinkzcos(2k+)=coskztan(2k+)=tankzcot(2k+)=cotkz公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)=-sincos(+)=-costan(+)=tancot(+)=cot公式三:任意角与-的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin(-)=sincos(-)=-cos

2、tan(-)=-tancot(-)=-cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2-)=-sincos(2-)=costan(2-)=-tancot(2-)=-cot公式六:/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tan高中数学三角函数的诱导公式二推算公式:3/2与的三角函数值之间的关系:sin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3

3、/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tan高学习方法1.先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。2.二次函数,二次方程不仅是初中重点,也是难点。在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了!解不等式的时候就要从先解方程的根开始,二次项系数大于0时,有个口诀得记下:“大于号取两边,小于号取中间”。3.因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解

4、,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。4.判别式很重要,不仅能判断二次方程的根有几个,大于零2个根;等于零1个根;小于零无根。而且还能判断二次函数零点的情况,人教版必修一就会学到。集合里面有许多题也要用到。高中数学的1.口诀记忆法高中数学中,有些方法如果能编成或歌诀,可以帮助记忆。例如,根据一元二次不等式ax2+bx+c0(a0,0)与ax2+bx+c0,0)的解法,可编成乘积或分式不等式的解法口诀:“两大写两旁,两小写中间”。即两个一次因式之积(或商)大于0,解答在两根之外;两个一次因式之积(或商)小于0,解答在两根之内。当然,使用口诀时,必先将各个一次因式中

5、X的系数化为正数。利用口诀时,必先将各个一次因式中X的系数化为正数。利用这一口诀,我们就很容易写出乘积不2.形象记忆法有些知识,如果能借助图形,可以加强记忆。例如,化函数y=asinx+bcosx(a0,b0)为一个角的三角函数,可以用a、b为直角边作数和对数函数的图象,可帮助记忆其性质、定义域和值域;利用三角函数的图象,可帮助记忆三角函数的性质、符号、定义、值域、增减性、周期性、被值;利用二次函数的图象,可帮助记忆抛物线的性质开口、顶点、对称轴和极值。3.表格记忆法有些知识借助表格也能帮助记忆。例如,0、30、45、60、90等特殊角的三角函数值;等差与等比数列的定义、一般形式、通项公式an

6、、前n项的和sn性质及注意事项;指数与对数函数的定义、图象、定义域、值域及性质;反三角函数的定义、图象、定义域、主值区间、增减性及有关公式;最简三角方程的通值公式等等,都可以用表格帮助记忆。有些数学题的解题方法,也可以用表格化难为易、驭繁为简。例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。4.联想记忆法对新知识可以联想已牢固记忆的旧知识,用类比的方法来帮助记忆。例如:高次方程的根与系数的关系,可以类比二次方程的韦达定理来帮助记忆;一元n次多项式的因式分解定理可以类比二次三项式因式分解定

7、理来帮助记忆。有些数学题的解法也可以用联想的方法帮助记忆。例如,联想到实数的有序性,我们容易写出乘积不等式(2x+1)(x-3)(x-1)(2x+5)等式的一个范围内的解。写出了这个范围的解,其余范围的解就可以每隔一个区间向前很顺利地写出。可见,将每一个一次因式中X的系数都化为正数后,用实数的有序性来解乘积或分式不等式是十分方便的。5.分类记忆法遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指函数的导数(3个)。6.“四多”记忆法要使记忆对象经久不忘,一般来说要经过多次反复的感知。“四多”即多看、多听、多读、多写。特别是边读边默写,记忆效果更佳。例如,甲对某组公式单纯抄写四次,乙对同组公式抄写两次然后默写(默写不出时可看书)两次,实验证明,乙的记忆效果优于甲。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁