平新乔《微观经济学十八讲》课后习题详解(第10讲策略性博弈与纳什均衡).docx

上传人:赵** 文档编号:67363026 上传时间:2022-12-24 格式:DOCX 页数:11 大小:587.98KB
返回 下载 相关 举报
平新乔《微观经济学十八讲》课后习题详解(第10讲策略性博弈与纳什均衡).docx_第1页
第1页 / 共11页
平新乔《微观经济学十八讲》课后习题详解(第10讲策略性博弈与纳什均衡).docx_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《平新乔《微观经济学十八讲》课后习题详解(第10讲策略性博弈与纳什均衡).docx》由会员分享,可在线阅读,更多相关《平新乔《微观经济学十八讲》课后习题详解(第10讲策略性博弈与纳什均衡).docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 平新乔微观经济学十八讲第 10 讲 策略性博弈与纳什均衡跨考网独家整理最全经济学考研真题,经济学考研课后习题解析资料库,您可以在这里查阅历年经济学考研真题,经济学考研课后习题,经济学考研参考书等内容,更有跨考考研历年辅导的经济学学哥学姐的经济学考研经验,从前辈中获得的经验对初学者来说是宝贵的财富,这或许能帮你少走弯路,躲开一些陷阱。以下内容为跨考网独家整理,如您还需更多考研资料,可选择经济学一对一在线咨询进行咨询。1假设厂商 A 与厂商 B 的平均成本与边际成本都是常数,MC =10 MC = 8,对厂AB商产出的需求函数是Q = 500 - 20 pD(1)如果厂商进行 Bertrand

2、竞争,在纳什均衡下的市场价格是多少?(2)每个厂商的利润分别为多少?(3)这个均衡是帕累托有效吗?解:(1)如果厂商进行 Bertrand 竞争,纳什均衡下的市场价格是p = 10 -e ,p =10BA其中e 是一个极小的正数。理由如下:假设均衡时厂商 A 和 B 对产品的定价分别为 和 ,那么必有p,即厂p 8pp 10ABA商的价格一定要高于产品的平均成本。其次,达到均衡时, 和 都不会严格大于 10。否BppAB则,价格高的厂商只需要把自己的价格降得比对手略低,它就可以获得整个市场,从而提高自己的利润。所以均衡价格一定满足,。但是由于 的下限也是 10,所以p 10pp 10AB,厂

3、商 B 的最优选择是令A均衡时。给 定e ,这里e 是一个介于 0 到 2p = 10 -p =10p =10AAB之间的正数,这时厂商B 可以获得整个市场的消费者。综上可知,均衡时的价格为,p =10Ap = 10 -e 。B(2)由于厂商 A 的价格严格高于厂商 B 的价格,所以厂商 A 的销售量为零,从而利润也是零。下面来确定厂商 B 的销售量,此时厂商 B 是市场上的垄断者,它的利润最大化问题为:max pq - cqe0()e ,把这两个式子代入式中,得到:q 500 20 10- -其中,p = 10 -e=()( )eemax 10- -8 500- 20 10- e0解得e =

4、 ,由于e 必须严格大于零,这就意味着e 可以取一个任意小的正数,所以厂商0( ) ( )e 。500- 20 10 - 10 -B 的利润为:e(3)这个结果不是帕累托有效的。因为厂商 B 的产品的价格高于它的边际成本,所以如果厂商 B 和消费者可以为额外 1 单位的产品协商一个介于 8 到 -e 之间的价格,那么厂10商 B 的利润和消费者的剩余就都可以得到提高,同时又不损害厂商 A 的剩余(因为 A 的利润还是零)。2(单项选择)在下面的支付矩阵(表 10-1)中,第一个数表示 A 的支付水平,第二个数表示 B 的支付水平, 、 、 、 是正的常数。如果 A 选择“下”而 B 选择“右”

5、,cabd那么: 表 10-1 博弈的支付矩阵(1)且b 1 d 1(2) 且c 1 b 1(3)(4)且b 1 c d且b cd 1(5) 且a 1 b d【答案】(3)【分析】由于(下,右)是均衡策略,所以给定 B 选择“右”,“下”是 A 的最优选择,这就意味着 ;同样的,给定A 选择“下”,“右”也是B 的最优选择,这就意味着b 1。c d3史密斯与约翰玩数字匹配游戏。每一个人选择1、2 或者 3。如果数字相同,约翰支付给斯密 3 美元。如果数字不同,斯密支付给约翰 1 美元。(1)描述这个对策的报酬矩阵,并且证明没有纯策略纳什均衡策略组。1(2)如果每一个局中人以 的概率选择每一个数

6、字,证明这个对策的混合策略确实有3一纳什均衡。这个对策的值是什么?解:(1)根据题意,构造如下的支付矩阵(表10-2)(其中每一栏中前一个数字是史密斯的支付,后一个数字是约翰的支付):表 10-2 玩数字匹配游戏的支付矩阵首先由史密斯来选择,假设史密斯选择 1,并期望约翰选择 1,从而使自己得到 3 的支付。但是,如果史密斯选择1,则约翰一定会选择2 或者 3,从而使自己得到 1,而不是-3。假设约翰选择 2,他期望史密斯选择 1 或者 3,以使得自己得到 1,而实际上史密斯会选择 2,使得约翰得到-3,等等。不断的循环反复,最终也无法达成一个使得双方都能够接受的方案。因此,这个对策没有一个纯

7、策略纳什均衡。(2)假设均衡时,约翰选择 1、2、3 的概率分别为 、 和x,那么此时史密x1- x - x1212斯在选择 1、2、3 之间是没有区别的,即:()()()3x - x - 1- x - x = -x + 3x - 1- x - x = -x - x + 3 1- x - x121212121212从而解得13x = x =1- x - x =1212类似的方法可以解得史密斯在均衡状态下选择1、2、3 的概率分别为 1/3。 Born to win经济学考研交流群 点击加入4假定世界上氪的整个供给由 20 个人控制,每一个人拥有这种强有力的矿物 10000克。世界对氪的需求是Q

8、 = 1000 -1000 p其中 是每克的价格。p(1)如果所有拥有者合谋控制氪的价格,他们设置的价格是多少?他们能够卖出的量是多少?(2)为什么(1)中计算的价格是不稳定的?(3)通过改变要求保持市场价格的产出,在没有厂商能够获利的意义下存在一个稳定的均衡时,氪的价格是多少?解:(1)所有拥有者合谋控制氪的价格,此时总的利润函数为:1利润最大化的一阶条件为:11解得总供应量为(克)。此时1Q =0.5 ,每个厂商的供应量为Q = 500p = -1000500 / 20 = 25(克)。(2)对第一个厂商而言,给定其他每个厂商的供应量为 25 克,那么他的利润最大化问题为:525- qma

9、xq1q111000根据一阶条件解得:q = 262.51可见在其他厂商的供应量为 25 克的条件下,厂商 1 增加供应量会提高自己的利润。类似的结论对市场上的其他厂商也成立,所以合谋是不稳定的。(3)题目要求完全竞争市场的均衡结果。令p = MC ,得到氪的价格为零。市场上的总供给量为 1000 克,每个成员的出售量为 50 克。5在下表所示的策略型博弈(表 10-3)中,找出占优均衡。表 10-3 博弈的支付矩阵答:对于行为人 2 而言, 优于 ,所以行为人 2 将会剔除掉 策略,只在 、 这RRMML两个策略中进行选择;对于行为人 1 来说,知道了行为人 2 会在 、 策略中选择,则 占

10、L RU优于 和 策略。当行为人 2 知道行为人 1 选择了 策略时,他则最终会选择 策略。所UMDL以,最终的占优均衡为( , )。LU985/211 历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 6模型化下述划拳博弈:两个老朋友在一起划拳喝酒,每个人有四个纯策略:杆子、老虎,鸡和虫子。输赢规则是:杆子降考虎,老虎降鸡,鸡降虫子,虫子降杆子。两个人同时出令。如果一个打败另一个,赢者的效用为 1,输者的效用为-1;否则,效用均为 0。写出这个博弈的收益矩阵。这个博弈有纯策略纳什均衡吗?计算出混合策略纳什均衡。答:(1)该题的支付矩阵(表 10-4)为:表 10-4

11、 划拳博弈的支付矩阵(2)这是一个零和博弈,没有纯策略纳什均衡。这是因为:对两个参与者,给定对方策略时,本方的占优策略对应的支付以下划线标注,均衡存在当且仅当在同一栏中出现两个下划线。由此可知,该博弈没有纯策略纳什均衡。(3)记游戏者 1 分别选择各个策略的概率为,游戏者 2 分别选择各个策p , p , p , p3124略的概率为。q ,q ,q ,q3124当游戏者 2 分别以概率选择四个策略时,游戏者 1 的四个策略的收益应该q ,q ,q ,q3124相等(根据同等支付原则):( )( )( )( )1q + -1 q = -1 q +1q = -1 q +1q =1q + -1 q

12、2413241314又因为 q + q + q + q = 1,可以得到:q = q = q = q =。12341234同理,当对于游戏者 1 分别以概率选择四个策略时,游戏者 2 的四个策略p , p , p , p3124的收益应该相等(根据同等支付原则):( )( )( )( )1 p + -1 p = -1 p +1 p = -1 p +1 p = 1 p + -1 p2413241314又因为,可以得到:。p + p + p + p = 1p = p = p = p =12341234因此混合策略纳什均衡为:(s ,s ),其中12 1 1 1 1 1 1 1 1 , , , ,

13、, ,s =s =1 4 4 4 4 4 4 4 4 27巧克力市场上有两个厂商,各自都可以选择去市场的高端(高质量),还是去低端(低质量)。相应的利润由如下收益矩阵(表 10-5)给出:表 105 巧克力商的博弈 Born to win经济学考研交流群 0(2)当a g b 0985/211 历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 证明:该博弈的支付矩阵如表 10-6和 10-7所示。表 10-6 G汽车厂生产 SM型汽车表 10-7 G汽车厂生产 LG型的汽车(1)该博弈存在纳什均衡。首先考虑三家选择的行动相同,那么任一个厂家都将得到数量为g 的利润。因

14、为a b g ,所以任何厂商只要选择和其他两个工厂生产不同型号的产 品,就可以获得更高的利润,所以三家工厂生产相同的产品不是纳什均衡。如果三个工厂生()(),因为a b g ,所以C厂已经获得了它产不同的产品,比如说 a a a= SM, LG,SMg, cf可能获得的最高利润,因此它不会背叛;给定其他厂商的选择,F 厂生产 LG 型号的汽车只能获得数量为 b 的利润,高于它生产 SM型号的汽车获得的数量为g 的利润,所以 F厂也不会背叛;给定其他厂商的选择,G厂在生产两种型号的汽车之间是没有差异的,因为无论那种情况下,他都只能获得数量为b 的利润,所以 G厂同样不会背叛。()(综上可知 a

15、a a)是一个纳什均衡。类似的分析表明,只要三个工厂= SM, LG,SMg,cf生产不同的产品,就是纳什均衡。(2)只要三个工厂生产的汽车型号不完全相同,这样的结果就是纳什均衡。分析类似于第(1)问。9考虑下列策略型博弈(表 10-8):表 10-8 博弈的支付矩阵请问,该博弈里有几个均衡?为什么?答:(1)该博弈的纯策略均衡为( , )。DR;(2)下面分析混合策略均衡。设参与人A分别选择策略 、 和 的概率为U MDp , p , p213 ;下面分三种情况讨论:设参与人 B分别选择策略 、 和 的概率为q ,q ,qLMR123达到混合均衡时,如果参与人 A分别选择策略 、 和 的概率

16、都严格大于零,那DUM么他选择策略 、 和 的期望收益就要相等,即:q - 2q = -2q + q = qUMD12123从而解得,矛盾,所以对参与人 B而言,不存在使得 , , 同时大于q q qq = q = -q123123 Born to win经济学考研交流群 点击加入零的混合均衡;对参与人 A 也有类似的结论成立。尽管如此,以上的分析并不能说明不存在混合均衡。因为达到均衡时,有可能存在参与人选择某一行动的概率为零的可能。对A 而言,在 、 、 三个行动中选择某一行动DUM的概率等于零的情况共有三种可能。对 B 也是一样,这样均衡时共有九种可能的情况,下面分别讨论:aA 选择行动

17、的概率为零,B 选择行动 的概率为零,即R0 ,从而得到如表Dp = q =3310-9 所示的支付矩阵:表 10-9 博弈的支付矩阵达到均衡时,A 选择 和 应当得到相同的期望支付,即U22,整理得到q - q = - q + qM1212;又因为p = p =0.5 。所q = qq =q + q =q = q =123121212以0.5,q =20.5,q =3p =10.5,p =20.5,0 就是一个混合均衡。13bA 选择行动 的概率为零,B 选择行动 的概率为零,采用类似于的做法可知,MD在这种情况下,不存在混合均衡。cA 选择行动 的概率为零,B 选择行动 L 的概率为零,采

18、用类似于的做法可知,D在这种情况下,不存在混合均衡。dA 选择行动 的概率为零,B 选择行动 R 的概率为零,采用类似于的做法可知,M在这种情况下,不存在混合均衡。eA 选择行动 的概率为零,B 选择行动 的概率为零,采用类似于的做法可知,MM在这种情况下,不存在混合均衡。fA 选择行动 的概率为零,B 选择行动 L 的概率为零,采用类似于的做法可知,M在这种情况下,不存在混合均衡。gA 选择行动 的概率为零,B 选择行动 R 的概率为零,采用类似于的做法可知,U在这种情况下,不存在混合均衡。hA 选择行动 的概率为零,B 选择行动 的概率为零,采用类似于的做法可知,MU在这种情况下,不存在混

19、合均衡。iA 选择行动 的概率为零,B 选择行动 的概率为零,采用类似于的做法可知,LU在这种情况下,不存在混合均衡。 =0.5,0.5,0 。综合上述分析可知,唯一的混合均衡就是:s0.5,0.5,0 ,s=AB均衡时,如果 A 选择某两个行动的概率都等于零,即 A 只能选择一个行动。这就要求在 B 的行动中,至少有一对行动可以给自己带来相同的支付,但是由支付矩阵可知,这一条件并不满足,这样均衡时,B 也只能选择一个行动,这就退化成了纯策略均衡。所以A 选择某两个行动的概率都等于零的混合均衡是不存在的;同理 B 选择某两个行动的概率都等于零的混合均衡也是不存在的。综合上述分析可知,该博弈只有

20、唯一的混和均衡,即: 0p =q = 0.5,q = 0.5,q = 0和p =10.5,p = 0.5,21233985/211 历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解 10考虑如表 10-10 和 10-11 所示的策略型博弈表 10-10 参与人 3 选择 A 时的支付矩阵表 10-11 参与人 3 选择 B 时的支付矩阵每一格左边的数字是游戏者 1 的得益,中间的数字为游戏者 2 的得益,右边的数字为游戏者 3 的得益。游戏者 3 的策略是选 A 矩阵或选 B 矩阵。(1)上述博弈中有几个纯策略纳什均衡?为什么?(2)如果三个游戏者中可以有两个人结盟

21、共同对付另一个人,会出现什么结果?解:(1)上述博弈中有两个纯策略纳什均衡。它们分别为( , , )和( , ,DULAR)。对任意的参与人,给定其他两个参与者的行动,他的占优行动用下划线表示出来,由B此可以得到这两个纯策略纳什均衡。(2)若三人中有两人结盟,则不外乎下面三种情况:参与人 1 和 2 结盟,支付矩阵如表 10-12 所示,该博弈的均衡是(DR , )。B表 10-12 参与人 1 和 2 结盟后博弈的支付矩阵参与人 1 和 3 结盟,支付矩阵如表 10-13 所示,该博弈的均衡是(UA L, )和(,DB)。R表 10-13 参与人 1 和 3 结盟后博弈的支付矩阵参与人 2

22、和 3 结盟,支付矩阵如表 10-14 所示,该博弈的均衡是( , )和(LA U,RB Born to win经济学考研交流群 时,N 2,所以参与人 的最优选择是i。=0-1 0FiN由于所有行动者的行为相同,所以当 时,纳什均衡为N 2, = ,2, ;NF = 0 i 1i( )当 = 时,纳什均衡为N 2, = ,2;i 1F 0,+i当 = 时,纳什均衡为N 1。F +i Born to win经济学考研交流群 :经济学考研解题技巧跨考经济学考研辅导提醒您: 成功的原因千千万,失败的原因就那么几个,加入我们的经济学考研交流群,考研经验交流,规避风险,锁定名校一次进!985/211 历年真题解析,答案,核心考点讲义,你想要的都在这 经济学历年考研真题及详解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁