《《一元二次不等式及其解法》第一课时参考教案--【教学参考】.docx》由会员分享,可在线阅读,更多相关《《一元二次不等式及其解法》第一课时参考教案--【教学参考】.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课题:3.2 一元二次不等式及其解法第1课时【教学目标】1 .知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握 图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方 法,培养抽象概括能力和逻辑思维能力;2 .过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函 数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解 法;3 .情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神, 同时体会事物之间普遍联系的辩证思想。【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。【教学难点】理解二次函数、一元
2、二次方程与一元二次不等式解集的关系。【教学过程】1 .课题导入从实际情境中抽象出一元二次不等式模型:互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:x2-5x0(1)2 .讲授新课1) 一元二次不等式的定义象5%0这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式X25%0的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:斗=0,=5二次函数有两个零点:x, =0,%2 =5于是,我们得到:二次方程的根就是二次函数的零点。(2)观察图象,获得解集画出二次函
3、数y =的图象,如图,观察函数图象,可知: 当x5时,函数图象位于x轴上方,此时,y0,即2 _5%0 ;当0x5时,函数图象位于x轴下方,此时,y0,即/ 一5%0 ;所以,不等式炉5%0的解集是%|0%0,(a 0)或 + 区 + c 0)一般地,怎样确定一兀二次不等式以之+ +。0与ax2 +x + c 0)与x轴的相关位置,分为三种情况,这可以由一元二次方程 / +Z?% + c=O的判别式 = )2 -4ac三种取值情况(A 0,A=0, A0)来确定.因此,要分二种情况讨论2 2) a0分), =(), A0与ax2 +bx + c Oax2 +H+c 0二次函数y - ax +b
4、x + c(。)的图象y - ax +bx + c 如一兀一次方程21。厂 +Z?x + c = 0(0的根有两相异实根X,尤2 a V 尤2)ax +bx + c0 (。0)的解集xxx2ax +Z?x+c0)的解集xx x x2) = 0A0的解集.解:因为 = (),方程4/一4尤+ 1 = 0的解是玉=g.所以,原不等式的解集是口例3解不等式一d+2x 30.解:整理,得一-2x + 3v0.因为AvO,方程%2一2% + 3 = 0无实数解,所以不等式X 2尤+ 30(0)计算判别式,分析不等式的解的情况:.A d -4口!若人0,贝卜;i .A0时,求根工尸修,什 e右A 0,则玉
5、 x 若A0,则 w%()的一切实数;ii .A=0时,求根%=12 = %0,,若人0,则若A 0,则x = Xo. X.A d 士工口工刀(若A0,贝卜&m.AvO时,万程无解,什若40,则写出解集.5 .评价设计【板书设计】小数除法教材简介:本单元的主要内容有:小数除以整数、一个数除以小数、商的近似值、循环 小数、用计算器探索规律、解决问题。教学目标1、使学生掌握小数除法的计算方法。2、使学生会用“四舍五入”法,结合实际情况用“进一”法和“去尾”法取商 的近似数,初步认识循环小数、有限小数和无限小数。3、使学生能借助计算器探索计算规律,能应用探索出的规律进行小数乘除法的 计算。4、使学生
6、体会解决有关小数除法的简单实际问题,体会小数除法的应用价值。教学建议:1 .抓住新旧知识的连接点,为小数除法的学习架设认知桥梁。2.联系数的含义进行算理指导,帮助学生掌握小数除法的计算方法。课时安排:本单元可安排11课时进行教学。第一课时小数除以整数(一)商大于1教学内容:P16例1、做一做,P19练习三第1、2题。教学目的:1、掌握比较容易的除数是整数的小数除法的计算方法,会用这种方法计算相应 的小数除法。2、培养学生的类推能力、发散思维能力、分析能力和抽象概括能力。3、体验所学知识与现实生活的联系,能应用所学知识解决生活中的简单问题, 从中获得价值体验。教学重点:理解并掌握小数除以整数的计
7、算方法。教学难点:理解商的小数点要与被除数的小数点对齐的道理。教学过程:一、复习准备:计算下面各题并说一说整数除法的计算方法.224 + 4=4164-32=13804-15 =一-导入新课:情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王 鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?出示例1:王鹏坚持晨练。他计划4周跑步22. 4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式? (22.4 + 4)观察这道算式和前面学习的除法相比有什么不同?板书课题:“小数除以整数”。三.教学新课:教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论
8、情况: (1)生:22. 4 千米=22400 米22400 + 4=5600 米5600 米=5. 6 千米(2)还可以列竖式计算。教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算 的?追问:24表示什么?商的小数点位置与被除数小数点的位置有什么关系?引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一 位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了, 相同数位才对齐了,所以商的小数点要对着被除数的小数点对齐”.问:和前面准备题中的224除以4相比,224除以4和它有哪些
9、相同的地方?有哪 些不同的地方?怎样计算小数除以整数?(按整数除法的方法除,计算时商的小数点要和 被除数的小数点对齐)教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.四、巩固练习完成“做一做”:25.2 + 634.54-15五、课堂作业:练习三的第1、2题课后反思:学生们在前一天的预习后共提出四个问题:1,被除数是小数的除法怎样计算?(熊佳豪)2,为什么在计算时先要扩大,最后又要将结果缩小?(郑扬)3,小数除以整数怎样确定小数点的位置?(梅家顺)4,为什么小数点要打在被除数小数点的上面?特别是第4个问题很有深度,有研究的价
10、值.在这四个问题的带动下,学生们一直精神饱满地投入到学习的全过程,教学效果相当好.第二课时小数除以整数(二)商小于1教学内容:P17例2、例3、做一做,P18例4、做一做,P1920练习三第3一11 题。教学目的:1、使学生学会除数是整数的小数除法的计算方法,进一步理解除数是整数的小 数除法的意义。2、使学生知道被除数比除数小时,不够商1,要先在商的个位上写0占位;理 解被除数末位有余数时,可以在余数后面添0继续除。3、理解除数是整数的小数除法的计算法则跟整数除法之间的关系,促进学习的 迁移。教学重点:能正确计算除数是整数的小数除法。教学难点:正确掌握小数除以整数商小于1时,计算中比较特殊的两
11、种情况。教学过程:一、复习:教师出示复习题:(1) 22.44-4(2) 21.454-15教师先提问:“除数是整数的小数除法,计算时应注意什么? ”然后让学生独立 完成。二、新课1、教学例2:上节课我们知道王鹏平均每周跑5.6千米,那他每天跑多少千米呢?这道题该如何列式?问:你为什么要除以7,题目里并没有出现7?原来这个条件隐藏在题目中,我们要仔细读题才能发现.尝试用例1的方法进行计算,在计算的过程中遇到了什么问题?(被除数的整数部分比除数小)问:“被除数的整数部分比除数小,不够商1,那商几呢?为什么要商0?(在被除 数个位的上面,也就是商的个位上写“0”,用0来占位。)强调:点上小数点后接
12、着算.请同学们试着做一做。2. 4/37. 2/9学生做完后,教师问:在什么情况下,小数除法中商的最高位是0?2、教学例3:先让学生根据题意列出算式,再让学生用竖式计算。当学生计算到12除6时, 教师提问:接下来怎么除?请同学们想一想。引导学生说出:12除6可以根据小数末尾添上0以后小数大小不变的性质,在6 的右面添上0看成60个十分之一再除。请同学们自己动笔试试。在计算中遇到被除数的末尾仍有余数时该怎么办?在余数后面添0继续除的依据是什么?3、做教科书第17页的做一做。4、教学例4:想一想,前面几例小数除以整数是怎样计算的?在计算过程中应 注意什么?整数部分不够商1怎么办?如果有余数怎么办?
13、引导学生总结小数除以整数的计算方法。(1)小数除以整数按照整数除法的方法 去除,(2)商的小数点要和被除数的小数点对齐,(3)整数部分不够除,商0,点上 小数点再除;(4)如果有余数,要添0再除。师:怎样验算上面的小数除法呢?(用乘法验算)自己试一试。5、P18 做一做。三、课堂小结:1、说说除数是整数的小数除法的计算法则。2、被除数比除数小时,计算要注意什么?四、课堂作业:P19第4题,P20第8、11题。五、作业:P19第3、5、6题,P20第7、9、10题。课后小记:本课新增知识点多,难度较大,特别是例3应引导学生去思考其计算依据。 课堂中张子钊同学问到“为什么以往除法有余数时都是写商几
14、余几,可今天却要 在小数点后面添0继续除呢? ”这反映出新知与学生原有知识产生了认知冲突, 在此应帮助学生了解到知识的学习是分阶段的,逐步深入的。以往无法解决的问 题在经过若干年后就可以通过新的方法、手段、途径来解决,从而引导其构建正 确的知识体系。学生归纳综合能力的培养在高年段显得尤为重要。虽然教材中并没有规范 的计算法则,但作为教师有必要让学生经历将计算方法归纳概括并通过语言表述 出来的过程,所以引导学生小结小数除法的计算法则,然后再由教师总结出规范 简洁的法则是必不可少的教学环节。作业应注意以下几方面错误:1、整数除以整数,商是小数的计算题,学生容易遗忘商的小数点。2、商中间有零的除法掌握情况不太好,需要及时弥补。对于极个别计算 确有困难的同学建议用低段带方格的作业本打草稿,这样便于他们检查是否除到 哪一位就将商写在那一位的上面。