《5.3.2命题、定理、证明(2)35222.ppt》由会员分享,可在线阅读,更多相关《5.3.2命题、定理、证明(2)35222.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、5.3.25.3.2命题、定理、证明命题、定理、证明(第(第2 2课时)课时)本课学习是从以往学习的命题出发,指出了定理和证明的概念,并以“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”为例,呈现了一个完整的用符号语言表述的证明过程,来说明什么是证明并结合一个反例,说明“相等的角是对顶角”是假命题,让学生理解通过反例判断假命题的方法课件说明学习目标学习目标:(1)理解什么是定理和证明(2)知道如何判断一个命题的真假学习重点学习重点:理解证明要步步有据课件说明问题问题1请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行 线中
2、的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果 ,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线1 1、数学中有些命题的正确性是、数学中有些命题的正确性是人们在人们在长期实践长期实践中总结中总结出来的,并把它们作为判断其他命题真假出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做的原始依据,这样的真命题叫做公理公理。2 2、有些命题可以从公理或其他真命题出发,用、有些命题可以从公理或其他真命题出发,用逻辑推理逻辑推理的方法判断它们是正确的,并且可以的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依
3、据进一步作为判断其他命题真假的依据,这样的,这样的真命题叫做真命题叫做定理定理。公理公理和和定理定理都可作为判断其他命题真假的都可作为判断其他命题真假的依据依据。公理举例:公理举例:经过两点有且只有一条直线。经过两点有且只有一条直线。2、线段最短公理:、线段最短公理:两点的所有连线中,线段最短。两点的所有连线中,线段最短。4、平行线判定公理:、平行线判定公理:同位角相等,两直线平行。同位角相等,两直线平行。5、平行线性质公理:、平行线性质公理:两直线平行,同位角相等。两直线平行,同位角相等。1、直线公理:、直线公理:3、平行公理:、平行公理:经过直线外一点,有且只有一条经过直线外一点,有且只有
4、一条直线与已知直线平行。直线与已知直线平行。同角或等角的补角相等。同角或等角的补角相等。2、余角的性质、余角的性质定理定理:同角或等角的余角相等。同角或等角的余角相等。4、垂线的性质:、垂线的性质:垂线唯一性定理:过一点有且垂线唯一性定理:过一点有且只有一条直线与已知直线垂直;只有一条直线与已知直线垂直;5、平行公理的推论:、平行公理的推论:如果两条直线都和第三条如果两条直线都和第三条直线平行,那么这两条直直线平行,那么这两条直线也互相平行。线也互相平行。1、补角的性质、补角的性质定理定理:3、对顶角的性质、对顶角的性质定理定理:对顶角相等。对顶角相等。垂线段最短定理:垂线段最短定理:定理举例
5、:定理举例:问题问题3请同学们判断下列两个命题的真假,并思考如何判断命题的真假命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条(1)命题1是真命题还是假命题?(2)你能将命题1所叙述的内容 用图形语言来表达吗?命题命题1在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条(3)这个命题的题设和结论分别是什么呢?题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条(4)你能结合图形用几何语言表述命题的题设和结论吗?命题命题1 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.已
6、知:bc,ab 求证:ac(5)请同学们思考如何利用已经学过的定义定理来证明这个结论呢?已知:bc,ab 求证:ac证明:ab(已知),又 bc(已知),1=2(两直线平行,同位角相等).2=1=90(等量代换)1=90(垂直的定义)ac(垂直的定义)问题问题3请同学们判断下列两个命题的真假,并思考如何判断命题的真假命题2 相等的角是对顶角(1)判断这个命题的真假(2)这个命题题设和结论分别是什么?题设:两个角相等;结论:这两个角互为对顶角(3)我们知道假命题是在条件成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系.问题问题3请同学们判断下列两个命题的真假,并思考如何判断命题的真假命题2 相等的角是对顶角练习练习1填空已知:如图1,1=2,3=4,求证:EGFH证明:1=2(已知)AEF=1();AEF=2()ABCD()BEF=CFE()3=4(已知);BEF4=CFE3即GEF=HFE()EGFH()对顶角相等 等量代换同位角相等,两直线平行 两直线平行,内错角相等等式性质内错角相等,两直线平行练习练习2请你说出一个假命题,并举出反例归纳小结归纳小结1如何判断一个命题的真假?2谈谈你对证明的理解。布置作业布置作业教科书教科书 习题习题5.3 第第12、13题题