线性规划在工商管理中的应用-new.ppt

上传人:wuy****n92 文档编号:66744006 上传时间:2022-12-19 格式:PPT 页数:27 大小:318.50KB
返回 下载 相关 举报
线性规划在工商管理中的应用-new.ppt_第1页
第1页 / 共27页
线性规划在工商管理中的应用-new.ppt_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《线性规划在工商管理中的应用-new.ppt》由会员分享,可在线阅读,更多相关《线性规划在工商管理中的应用-new.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、管管 理理 运运 筹筹 学学第四章第四章 线性规划在工商管理中的应用线性规划在工商管理中的应用1 1 人力资源分配的问题2 2 生产计划的问题3 3 套裁下料问题4 4 配料问题5 5 投资问题1管管 理理 运运 筹筹 学学11人力资源分配的问题 2 例1某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如下:设司机和乘务人员分别在各时间段一开始时上班,并连续工作八小时,问该公交线路怎样安排司机和乘务人员,既能满足工作需要,又配备最少司机和乘务人员?管管 理理 运运 筹筹 学学11人力资源分配的问题 解:设 xi 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函

2、数:Min x1+x2+x3+x4+x5+x6 约束条件:s.t.x1+x6 60 x1+x2 70 x2+x3 60 x3+x4 50 x4+x5 20 x5+x6 30 x1,x2,x3,x4,x5,x6 03管管 理理 运运 筹筹 学学11人力资源分配的问题 例2一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?4管管 理理 运运 筹筹 学学11人力资源分配的问题 解:设 xi(i=1,2,7)表示星期一至日开始休息的人

3、数,这样我们建立如下的数学模型。目标函数:Min x1+x2+x3+x4+x5+x6+x7 约束条件:s.t.x1+x2+x3+x4+x5 28 x2+x3+x4+x5+x6 15 x3+x4+x5+x6+x7 24 x4+x5+x6+x7+x1 25 x5+x6+x7+x1+x2 19 x6+x7+x1+x2+x3 31 x7+x1+x2+x3+x4 28 x1,x2,x3,x4,x5,x6,x7 05管管 理理 运运 筹筹 学学11人力资源分配的问题往往一些服务行业的企业对人力资源的需求一周内像例2所描述的那样变化,而每天的个时间段的需求又像例1往往描述的那样变化,在保证工作人员每天工作8

4、h,每周休息两天的情况下,如何安排能使人员的编制最小呢?6管管 理理 运运 筹筹 学学22生产计划的问题 例3某公司面临一个是外包协作还是自行生产的问题。该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。数据如表。问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?7管管 理理 运运 筹筹 学学22生产计划的问题 解:设 x1,x2,x3 分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,x4,x5 分别为由外协铸造再由本

5、公司加工和装配的甲、乙两种产品的件数。求 xi 的利润:利润=售价-各成本之和 产品甲全部自制的利润 =23-(3+2+3)=15 元 产品甲铸造外协,其余自制的利润 =23-(5+2+3)=13 元 产品乙全部自制的利润 =18-(5+1+2)=10 元 产品乙铸造外协,其余自制的利润 =18-(6+1+2)=9 元 产品丙的利润 =16-(4+3+2)=7 元 可得到 xi(i=1,2,3,4,5)的利润分别为 15元、10元、7元、13元、9元。8管管 理理 运运 筹筹 学学22生产计划的问题通过以上分析,可建立如下的数学模型:目标函数:Max 15x1+10 x2+7x3+13x4+9

6、x5 约束条件:5x1+10 x2+7x3 8000 6x1+4x2+8x3+6x4+4x5 12000 3x1+2x2+2x3+3x4+2x5 10000 x1,x2,x3,x4,x5 09管管 理理 运运 筹筹 学学22生产计划的问题例4永久机械厂生产、三种产品,均要经过A、B两 道工序加工。设有两种规格的设备A1、A2能完成 A 工序;有三种规格的设备B1、B2、B3能完成 B 工序。可在A、B的任何规格的设备上加工;可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;只能在A2与B2设备上加工。数据如表。问:为使该厂获得最大利润,应如何制定产品加工方案?10管管 理理 运运

7、筹筹 学学22生产计划的问题解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数量。建立如下的数学模型:s.t.5x111+10 x211 6000 (设备 A1)7x112+9x212+12x312 10000 (设备 A2)6x121+8x221 4000 (设备 B1)4x122 +11x322 7000 (设备 B2)7x123 4000 (设备 B3)x111+x112-x121-x122-x123=0(产品在A、B工序加工的数量相等)x211+x212-x221 =0(产品在A、B工序加工的数量相等)x312 -x322 =0(产品在A、B工序加工的数

8、量相等)xijk 0 ,i=1,2,3;j=1,2;k=1,2,311管管 理理 运运 筹筹 学学22生产计划的问题目标函数为计算利润最大化,利润的计算公式为:利润=(销售单价-原料单价)*产品件数之和-(每台时的设备费用*设备实际使用的总台时数)之和。这样得到目标函数:Max(1.25-0.25)(x111+x112)+(2-0.35)(x211+x212)+(2.80-0.5)x312 300/6000(5x111+10 x211)-321/10000(7x112+9x212+12x312)-250/4000(6x121+8x221)-783/7000(4x122+11x322)-200/

9、4000(7x123).经整理可得:Max0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121-0.5x221-0.4474x122-1.2304x322-0.35x12312管管 理理 运运 筹筹 学学33套裁下料问题 13 例5某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢各一根。已知原料每根长7.4 m,问:应如何下料,可使所用原料最省?解:共可设计下列8 种下料方案,见下表 设 x1,x2,x3,x4,x5,x6,x7,x8分别为上面 8 种方案下料的原材料根数。这样我们建立如下的数学模型。

10、目标函数:Min x1+x2+x3+x4+x5+x6+x7+x8 约束条件:s.t.x1+2x2 +x4 +x6 100 2x3+2x4+x5+x6+3x7 100 3x1+x2+2x3+3x4 +x6+4x8 100 x1,x2,x3,x4,x5,x6,x7,x8 0管管 理理 运运 筹筹 学学3套裁下料问题若可能的下料方案太多,可以先设计出较好的几个下料方案。较好,首先要求每个方案下料后的料头较短;其次方案总体能裁下所有各种规格的圆钢,且不同方案有着不同的各种所需圆钢的比。这样套裁即使不是最优解,也是次优解,也能满足要求并达到省料目的。如我们用前5种下料方案进行求解,也可得到上述最优解。1

11、4管管 理理 运运 筹筹 学学33套裁下料问题用“管理运筹学”软件计算得出最优下料方案:按方案1下料30根;按方案2下料10根;按方案4下料50根。即 x1=30;x2=10;x3=0;x4=50;x5=0;x6=x7=x8=0 只需90根原材料就可制造出100套钢架。注意:在建立此类型数学模型时,约束条件用大于等于号比用等于号要好。因为有时在套用一些下料方案时可能会多出一根某种规格的圆钢,但它可能是最优方案。如果用等于号,这一方案就不是可行解了。15管管 理理 运运 筹筹 学学44配料问题 16 例6某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,数据如右表。问:该厂应如

12、何安排生产,使利润收入为最大?解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。这样我们建立数学模型时,要考虑:对于甲:x11,x12,x13;对于乙:x21,x22,x23;对于丙:x31,x32,x33;对于原料1:x11,x21,x31;对于原料2:x12,x22,x32;对于原料3:x13,x23,x33;目标函数:利润最大,利润=收入-原料支出 约束条件:规格要求 4 个;供应量限制 3 个。管管 理理 运运 筹筹 学学44配料问题利润=总收入-总成本=甲乙丙三种产品的销售单价*产品数量-甲乙丙使用的原料单价*原料数量,故有目目标函数函数Max 50(x11+x12

13、+x13)+35(x21+x22+x23)+25(x31+x32+x33)-65(x11+x21+x31)-25(x12+x22+x32)-35(x13+x23+x33)=-15x11+25x12+15x13-30 x21+10 x22-40 x31-10 x33 约束条件:束条件:从第1个表中有:x110.5(x11+x12+x13)x120.25(x11+x12+x13)x210.25(x21+x22+x23)x220.5(x21+x22+x23)17管管 理理 运运 筹筹 学学44配料问题 从第2个表中,生产甲乙丙的原材料不能超过原材料的供应限额,故有 x11+x21+x31100 x1

14、2+x22+x32100 x13+x23+x3360 通过整理,得到以下模型:18管管 理理 运运 筹筹 学学44配料问题例6(续)目标函数:Max z=-15x11+25x12+15x13-30 x21+10 x22-40 x31-10 x33 约束条件:s.t.0.5 x11-0.5 x12-0.5 x13 0(原材料1不少于50%)-0.25x11+0.75x12-0.25x13 0(原材料2不超过25%)0.75x21-0.25x22-0.25x23 0(原材料1不少于25%)-0.5 x21+0.5 x22-0.5 x23 0(原材料2不超过50%)x11+x21+x31 100 (

15、供应量限制)x12+x22+x32 100 (供应量限制)x13+x23+x33 60 (供应量限制)xij 0 ,(i=1,2,3;j=1,2,3)19管管 理理 运运 筹筹 学学44配料问题例6(续)此线性规划的计算机解为x11=100,x12=50,x13=50,其余的xij=0,也就是说每天只生产产品甲200kg,分别需要用第1种原料100kg,第2种原料50kg,第3种原料50kg。20管管 理理 运运 筹筹 学学44配料问题 标准汽油标准汽油辛烷数辛烷数蒸汽压力蒸汽压力(g/cm2)库存量库存量(L)1107.57.1110-2380000293.011.38 10-2265200

16、387.05.6910-24081004108.028.45 10-2130100飞机汽油飞机汽油辛烷数辛烷数蒸汽压力蒸汽压力(g/cm2)产量需求产量需求1不小于不小于91不大于不大于9.96 10-2越多越好越多越好2不小于不小于100不大于不大于9.96 10-2不少于不少于25000021例7.汽油混合问题。一种汽油的特性可用两种指标描述,用“辛烷数”来定量描述其点火特性,用“蒸汽压力”来定量描述其挥发性。某炼油厂有1、2、3、4的4种标准汽油,其特性和库存量列于表4-8中,将这四种标准汽油混合,可得到标号为1,2的2种飞机汽油,这两种汽油的性能指标及产量需求列于表4-9中。问应如何根

17、据库存情况适量混合各种标准汽油,既满足飞机汽油的性能指标,又使2号汽油满足需求,并使得1号汽油产量最高?表表4-8表表4-9管管 理理 运运 筹筹 学学44配料问题 22解:设xij为飞机汽油i中所用标准汽油j的数量(L)。目标函数为飞机汽油1的总产量:库存量约束为:产量约束为飞机汽油2的产量:由物理中的分压定律,可得有关蒸汽压力的约束条件:同样可得有关辛烷数的约束条件为:管管 理理 运运 筹筹 学学44配料问题 23综上所述,得该问题的数学模型为:管管 理理 运运 筹筹 学学44配料问题 24由管理运筹学软件求解得:管管 理理 运运 筹筹 学学55投资问题 25例8某部门现有资金200万元,

18、今后五年内考虑给以下的项目投资。已知:项目A:从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B:从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;项目C:需在第三年年初投资,第五年末能收回本利140%,但规定最大投资额不能超过80万元;项目D:需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元。据测定每万元每次投资的风险指数如右表:问:问:1)应如何确定这些项目每年的投资额,使得第五年年末拥有资金的本利金额为最大?2)应如何确定这些项目每年的投资额,使得第五年年末拥有资金的本利在330万元的基础上

19、使得其投资的总的风险系数为最小?解:解:1 1)确定决策变量:连续投资问题 设 xij(i=15,j=14)表示第 i 年初投资于A(j=1)、B(j=2)、C(j=3)、D(j=4)项目的金额。这样我们建立如下的决策变量:A x11 x21 x31 x41 x51 B x12 x22 x32 x42 C x33 D x24管管 理理 运运 筹筹 学学55投资问题2 2)约束条件:束条件:第一年:A当年末可收回投资,故第一年年初应把全部资金投出去,于是 x11+x12=200;第二年:B次年末才可收回投资,故第二年年初有资金1.1 x11,于是 x21+x22+x24=1.1x11;第三年:年

20、初有资金 1.1x21+1.25x12,于是 x31+x32+x33=1.1x21+1.25x12;第四年:年初有资金 1.1x31+1.25x22,于是 x41+x42=1.1x31+1.25x22;第五年:年初有资金 1.1x41+1.25x32,于是 x51=1.1x41+1.25x32;B、C、D的投资限制:xi2 30(i=1、2、3、4),x33 80,x24 100 3 3)目)目标函数及模型:函数及模型:a)a)Max z=1.1x51+1.25x42+1.4x33+1.55x24 s.t.x11+x12=200 x21+x22+x24=1.1x11;x31+x32+x33=1

21、.1x21+1.25x12;x41+x42=1.1x31+1.25x22;x51=1.1x41+1.25x32;xi2 30(i=1、2、3、4),x33 80,x24 100 xij 0 (i=1、2、3、4、5;j=1、2、3、4)26管管 理理 运运 筹筹 学学Sb)b)所设变量与问题a相同,目标函数为风险最小,有 Min f=x11+x21+x31+x41+x51+3(x12+x22+x32+x42)+4x33+5.5x24 在问题a的约束条件中加上“第五年末拥有资金本利在330万元”的条件,于是模型如下:Min f=(x11+x21+x31+x41+x51)+3(x12+x22+x32+x42)+4x33+5.5x24 s.t.x11+x12=200 x21+x22+x24=1.1x11;x31+x32+x33=1.1x21+1.25x12;x41+x42=1.1x31+1.25x22;x51=1.1x41+1.25x32;xi2 30(i=1、2、3、4),x33 80,x24 100 1.1x51+1.25x42+1.4x33+1.55x24 330 xij 0 (i=1、2、3、4、5;j=1、2、3、4)2755投资问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁