《3.2 立体几何中的向量方法(三).ppt》由会员分享,可在线阅读,更多相关《3.2 立体几何中的向量方法(三).ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章第三章 空间向量与立体几何空间向量与立体几何3.2 3.2 立体几何中的向量方法(三)立体几何中的向量方法(三)一、复习引入一、复习引入用空间向量解决立体几何问题的用空间向量解决立体几何问题的“三步曲三步曲”。(1)建立立体图形与空间向量的联系,用空间向)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;位置关系以及它们之间距离和夹角等问题;(3)把向量
2、的运算结果)把向量的运算结果“翻译翻译”成相应的几何意义。成相应的几何意义。(化为向量问题)(化为向量问题)(进行向量运算)(进行向量运算)(回到图形)(回到图形)向量的有关知识:两向量数量积的定义:两向量数量积的定义:ab=|a|b|cosa,b两两向量夹角公式:向量夹角公式:cos a,b=直线的方向向量:与直线平行的非零向量直线的方向向量:与直线平行的非零向量平面的法向量:与平面垂直的向量平面的法向量:与平面垂直的向量练习练习 如图,如图,6060的二面角的棱上有的二面角的棱上有A A、B B两点,直线两点,直线ACAC、BDBD分别在这个二面角的两个半平面内,且都垂直分别在这个二面角的
3、两个半平面内,且都垂直ABAB,已已知知ABAB4 4,ACAC6 6,BDBD8 8,求,求CDCD的长的长.BACD 例例1 1:如如图图3 3,甲站在水,甲站在水库库底面上的点底面上的点A A处处,乙站在水,乙站在水坝坝斜面上的点斜面上的点B B处处。从。从A A,B B到直到直线线 (库底与水坝的交线)的距离(库底与水坝的交线)的距离ACAC和和BDBD分别为分别为 和和 ,CD,CD的长为的长为 ,AB,AB的长为的长为 。求库底与水坝所成二面角的余弦值。求库底与水坝所成二面角的余弦值。解:解:如图,如图,化为向量问题化为向量问题根据向量的加法法则根据向量的加法法则进行向量运算进行向
4、量运算于是,得于是,得设向量设向量 与与 的夹角为的夹角为 ,就是库底与水坝所成的二面角。就是库底与水坝所成的二面角。因此因此ABCD图图3所以所以回到图形问题回到图形问题库底与水坝所成二面角的余弦值为库底与水坝所成二面角的余弦值为 例例1 1:如如图图3 3,甲站在水,甲站在水库库底面上的点底面上的点A A处处,乙站在水,乙站在水坝坝斜面上的点斜面上的点B B处处。从。从A A,B B到直到直线线 (库底与水坝的交线)的距离(库底与水坝的交线)的距离ACAC和和BDBD分别为分别为 和和 ,CD,CD的长为的长为 ,AB,AB的长为的长为 。求库底与水坝所成二面角的余弦值。求库底与水坝所成二
5、面角的余弦值。思考:思考:(1)本题中如果夹角)本题中如果夹角 可以测出,而可以测出,而AB未知,未知,其他条件不变,可以计算出其他条件不变,可以计算出AB的长吗?的长吗?ABCD图图3分析:分析:可算出可算出 AB 的长。的长。(2)如果已知一个四棱柱的各棱长和一条)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦夹角都相等,那么可以确定各棱之间夹角的余弦值吗?值吗?分析:分析:如图,设以顶点如图,设以顶点 为端点的对角线为端点的对角线长为长为 ,三条棱长分别为,三条棱长分别为 各棱
6、间夹角为各棱间夹角为 。A1B1C1D1ABCD (3)如果已知一个四棱柱的各棱长都等于)如果已知一个四棱柱的各棱长都等于 ,并且以某一顶,并且以某一顶点为端点的各棱间的夹角都等于点为端点的各棱间的夹角都等于 ,那么可以确定这个四棱柱相邻,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?两个夹角的余弦值吗?A1B1C1D1ABCD分析:分析:二面角二面角平面角平面角向量的夹角向量的夹角回归图形回归图形 解:解:如图,在平面如图,在平面 AB1 内过内过 A1 作作 A1EAB 于点于点 E,EF在平面在平面 AC 内作内作 CFAB 于于 F。可以确定这个四棱柱相邻两个夹角的余弦值。可以确定这个
7、四棱柱相邻两个夹角的余弦值。空间空间“夹角夹角”问题问题1.异面直线所成角异面直线所成角lmlm若两直线若两直线 所成的所成的角为角为 ,则则例例2解:以点解:以点C C为坐标原点建立空间直角坐标系为坐标原点建立空间直角坐标系 如图所示,设如图所示,设 则:则:所以:所以:所以 与 所成角的余弦值为练习:在长方体 中,二面角的平面角二面角的平面角方方向向向向量量法法 将将二二面面角角转转化化为为二二面面角角的的两两个个面面的的方方向向向向量量(在在二二面面角角的的面面内内且且垂垂直直于于二二面面角角的的棱棱)的夹角。如图,设二面角的夹角。如图,设二面角 的大小为的大小为其中其中AB DCLBA
8、注意法向量的方向:同进同注意法向量的方向:同进同出,二面角等于法向量夹角出,二面角等于法向量夹角的补角;一进一出,二面角的补角;一进一出,二面角等于法向量夹角等于法向量夹角L 将将二二面面角角转转化化为为二二面面角角的的两两个个面面的的法法向向量量的的夹夹角角。如图,向量如图,向量 ,则二面角则二面角 的大小的大小 若二面角若二面角 的的大小为大小为 ,则则法向量法法向量法二面角的平面角二面角的平面角例例2 正正三三棱棱柱柱 中中,D是是AC的的中点,当中点,当 时,求二面角时,求二面角 的余弦值。的余弦值。CADBC1B1A1 解解法法一一:如如图图,以以C为为原原点点建建立立空空间间直直角
9、角坐坐标标系系C-xyz。设设底面三角形的边长为底面三角形的边长为a,侧棱长为侧棱长为b,则则 C(0,0,0)故则可设 =1,则B(0,1,0)yxzCADBC1B1A1FE作作 于于E,于于F,则则 即为二面角即为二面角 的大小的大小在在 中,中,即即E分有向线段分有向线段 的比为的比为由于 且 ,所以 在 中,同理可求 cos =即二面角 的余弦值为 yxzCADBC1B1A1FE解法二解法二:同法一,以:同法一,以C为原点建立空间直角坐标系为原点建立空间直角坐标系 C-xyz 在坐标平面在坐标平面yoz中中 设面设面 的一个法向量为的一个法向量为 同法一,可求同法一,可求 B(0,1,
10、0)可取可取 (1,0,0)为面为面 的法向量的法向量 yxzCADBC1B1A1由由 得得解得解得 所以,可取所以,可取 二面角二面角 的大小等于的大小等于 cos =即二面角即二面角 的余弦值为的余弦值为 方向朝面外,方向朝面外,方向朝面方向朝面内,属于内,属于“一进一出一进一出”的情的情况,二面角等于法向量夹角况,二面角等于法向量夹角ABn2.线面角线面角设设n为平面为平面 的法向量,直线的法向量,直线AB与平面与平面 所所成的角为成的角为 ,向量,向量 与与n所成的角为所成的角为 ,则则n而利用而利用 可求可求 ,从而再求出从而再求出 2.线面角线面角l设设直直线线l的的方方向向向向量量为为 ,平平面面 的的法法向向量量为为 ,且且直直线线 与平面与平面 所成的所成的角为角为 (),则则