《3.2 立体几何中的向量方法(一).ppt》由会员分享,可在线阅读,更多相关《3.2 立体几何中的向量方法(一).ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三章第三章 空间向量与立体几何空间向量与立体几何3.2 3.2 立体几何中的向量方法(一)立体几何中的向量方法(一)研究 从今天开始从今天开始,我们将进一步来体会向量这一工我们将进一步来体会向量这一工具在立体几何中的应用具在立体几何中的应用.为了用向量来研究空间的线面位置关系,首先我为了用向量来研究空间的线面位置关系,首先我们要用向量来表示直线和平面的们要用向量来表示直线和平面的“方向方向”。那么。那么如何用向量来刻画直线和平面的如何用向量来刻画直线和平面的“方向方向”呢?呢?一、直线的方向向量一、直线的方向向量AB直线直线l上的向量上的向量 以及与以及与 共线共线的向量叫做直线的向量叫做直
2、线l的的方向向量方向向量。由于垂直于同一平面的直线是互相平行的由于垂直于同一平面的直线是互相平行的,所以,可以所以,可以用垂直于平面的直线的方向向量来刻画平面的用垂直于平面的直线的方向向量来刻画平面的“方向方向”。二、平面的法向量二、平面的法向量平面的法向量:平面的法向量:如果表示向量如果表示向量 的有向线段所在直线垂的有向线段所在直线垂直于平面直于平面 ,则称这个向量垂直于平面,则称这个向量垂直于平面 ,记作记作 ,如果如果 ,那,那 么么 向向 量量 叫做叫做平面平面 的的法向量法向量.Al 给定一点给定一点A和一个向量和一个向量 ,那么过点那么过点A,以向量以向量 为法向量的平面是完全确
3、定的为法向量的平面是完全确定的.几点注意:几点注意:1.法向量一定是非零向量法向量一定是非零向量;2.一个平面的所有法向量都互相平行一个平面的所有法向量都互相平行;3.向量向量 是平面的法向量,向量是平面的法向量,向量 是是 与平面平行或在平面内,则有与平面平行或在平面内,则有由两个三元一次方程由两个三元一次方程组成的方程组的解是组成的方程组的解是不惟一的,为方便起不惟一的,为方便起见,取见,取z=1z=1较合理。较合理。其实平面的法向量不其实平面的法向量不是惟一的。是惟一的。平面的法向平面的法向量不惟一,量不惟一,合理取值即合理取值即可。可。例例3.3.在空间直角坐标系内,设平面在空间直角坐
4、标系内,设平面 经过经过 点点 ,平面,平面 的法向量为的法向量为 ,为平面为平面 内任意一点,求内任意一点,求 满足的关系式。满足的关系式。解:由题意可得解:由题意可得 因为方向向量与法向量可以确定直线和因为方向向量与法向量可以确定直线和平面的位置,所以我们应该可以利用直线的平面的位置,所以我们应该可以利用直线的方向向量与平面的法向量表示空间直线、平方向向量与平面的法向量表示空间直线、平面间的面间的平行、垂直、夹角平行、垂直、夹角等位置关系等位置关系.那么如何用直线的方向向量表示空间那么如何用直线的方向向量表示空间两直线平行、垂直的位置关系以及它们之两直线平行、垂直的位置关系以及它们之间的夹
5、角呢?如何用平面的法向量表示空间的夹角呢?如何用平面的法向量表示空间两平面平行、垂直的位置关系以及它们间两平面平行、垂直的位置关系以及它们二面角的大小呢?二面角的大小呢?三、平行关系:三、平行关系:四、垂直关系:四、垂直关系:A1xD1B1ADBCC1yzEFCD中点,求证:中点,求证:D1F例例5.5.在正方体在正方体中,中,E、F分分别别是是BB1,1,,平面平面ADE 证明:设正方体棱长为证明:设正方体棱长为1,为单位正交为单位正交 基底,建立如图所示坐标系基底,建立如图所示坐标系D-xyz,则可得:则可得:所以所以巩固性训练11.设设 分别是直线分别是直线l1,l2的方向向量的方向向量,根据根据下下 列条件列条件,判断判断l1,l2的位置关系的位置关系.平行平行垂直垂直平行平行巩固性训练22.设设 分别是平面分别是平面,的的法向量法向量,根据根据 下列条件下列条件,判断判断,的位置关系的位置关系.垂直垂直平行平行相交相交l1l2l1l1l2l