《计量经济学案例分析汇总.docx》由会员分享,可在线阅读,更多相关《计量经济学案例分析汇总.docx(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、计量经济学案例分析 1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002 年全国城市居民家庭平均每人每年消费支出为元, 最低的黑龙江省仅为人均元,最高的上海市达人均 10464 元,上海是黑龙江的倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可
2、能很多,例如, 居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。二、模型设定我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量 Y 选定为“城市居民每人每年的平均消
3、费支出”。因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002 年截面数据模型。影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据, 如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项 中。为了与“城市
4、居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。从 2002 年中国统计年鉴中得到表的数据:表2002 年中国各地区城市居民人均年消费支出和可支配收入地区城市居民家庭平均每人每年消费支出(元)城市居民人均年可支配收入(元)YX北京49天津 河北 山西 内蒙古辽宁 吉林 黑龙江上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏新疆作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图, 如图:12000图10000从散点图可以看出居民Y800
5、060004000400060008000100001200014000X家庭平均每人每年消费支出 (Y)和城市居民人均年可支配 收入(X)大体呈现为线性关系, 所以建立的计量经济模型为 如下线性模型:Y = bi1+ b X + u2 ii三、估计参数假定所建模型及随机扰动项ui 满足古典假定,可以用 OLS 法估计其参数。运用计算机软件 EViews 作计量经济分析十分方便。利用 EViews 作简单线性回归分析的步骤如下: 1、建立工作文件首先,双击 EViews 图标,进入 EViews 主页。在菜单一次点击 FileNewWorkfile,出现对话框“Workfile Range”。
6、在“Workfile frequency”中选择数据频率:Annual (年度)Weekly ( 周数据 )Quartrly (季度)Daily (5 day week ) ( 每周 5 天日数据 ) Semi Annual (半年)Daily (7 day week ) ( 每周 7 天日数据 ) Monthly (月度)Undated or irreqular (未注明日期或不规则的)在本例中是截面数据,选择“Undated or irreqular”。并在“Start date”中输入开始时间或顺序号,如“1”在“end date”中输入最后时间或顺序号,如“31”点击“ok”出现“Wo
7、rkfile UNTITLED”工作框。其中已有变量:“c”截距项 “resid”剩余项。在“Objects”菜单中点击“New Objec ts”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK”出现数据编辑窗口。若要将工作文件存盘,点击窗口上方“Save”,在“SaveAs”对话框中给定路径和文件名,再点击“ok”,文件即被保存。2、输入数据在数据编辑窗口中,首先按上行键“”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y”,再按下行键“”,对因变量名下的列出现“NA
8、”字样,即可依顺序输入响应的数据。其他变量的数据也可用类似方法输入。XX也可以在EViews 命令框直接键入“data X Y ”( 一元时) 或 “data Y12 ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y、X 下输入数据。若要对数据存盘,点击 “fire/Save As” ,出现“Save As”对话框,在“Drives”点所要存的盘,在“Directories”点存入的路径(文件名),在“Fire Name”对所存文件命名,或点已存的文件名,再点“ok”。若要读取已存盘数据,点击“ fire/Open”,在对话框的 “Drives”点所存的磁盘名,在“Directo
9、ries”点文件路径,在“Fire Name”点文件名,点击“ok”即可。3、估计参数方法一:在 EViews 主页界面点击“Quick”菜单,点击“Estimate Equation”,出现“Equation specification”对话框,选OLS 估计,即选击“Least Squares”,键入“Y C X”,点“ok”或按回车,即出现如表那样的回归结果。表在本例中,参数估计的结果为:Y = 282.2434 + 0.758511 Xii()t=r 2 = 0.935685F=df=29方法二:在EViews 命令框中直接键入“LS Y C X”,按回车,即出现回归结果。若要显示回归
10、结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项(Residual)、实际值(Actual)、拟合值(Fitted)的图形,如图所示。图四、模型检验1、经济意义检验=b0.758511所估计的参数 2,说明城市居民人均年可支配收入每相差1 元,可导致居民消费支出相差元。这与经济学中边际消费倾向的意义相符。2、拟合优度和统计检验用 EViews 得出回归模型参数估计结果的同时,已经给出了用于模型检验的相关数据。拟合优度的度量:由表中可以看出,本例中可决系数为,说明所建模型整体上对样本数据拟合较好,即解释变量“城市居民人均年可支配收入”对被解释变量“城市居民人均年消费支出
11、”的绝大部分差异作出了解释。H : b对回归系数的 t 检验:针对01= 0H : b和02= 0 ,由表中还可以看出,估计的回归系数b1 的标准误差和t 值分别为:SE(b ) = 287.26491t(b )0.982520=,1b; 2 的标准误差和t 值分别为:SE(b ) = 0.0369282t(b )20.540260.025=,2。取a = 0.05,查t 分布表得自由度为n - 2 = 31- 2 = 29的临界值t(29) = 2.045。因为t(b ) = 0.982520 t0.025 (29) = 2.045 ,所以应拒绝 H0 : b 2 = 0 。这表明,城市人均
12、年可支配收入对人均年消费支出有显著影响。五、回归预测由表中可看出,2002 年中国西部地区城市居民人均年可支配收入除了西藏外均在8000 以下,人均消费支出也都在 7000 元以下。在西部大开发的推动下,如果西部地区的城市居民人均年可支配收入第一步争取达到1000 美元(按现有汇率即人民币 8270 元),第二步再争取达到 1500 美元(即人民币 12405 元),利用所估计的模型可预测这时城市居民可能达到的人均年消费支出水平。可以注意到,这里的预测是利用截面数据模型对被解释变量在不同空间状况的空间预测。用 EViews 作回归预测,首先在“Workfile”窗口点击“Range”,出现“C
13、hange Workfile Range”窗口,将“End data”由“31”改为“33”,点“OK”,将“Workfile”中的“Range”扩展为 133。在“Workfile”窗口点击“sampl”,将“sampl”窗口中的“1 31”改为“1 33”,点“OK”,将样本区也改为 133。为了输入 X f 1 = 8270 , X f 2 = 12405 在 EViews 命令框键入 data x / 回车, 在 X 数据表中的“32”位置输入“8270”,在“33”的位置输入“12405”,将数据表最小化。然后在“E quation ”框中,点击“Forecast”,得对话框。在对话
14、框中的“Forecast name”Y(预测值序列名)键入“ f ”, 回车即得到模型估计值及标准误差的图形。双击“Workfile”窗口中出现的“ Yf ”,在“ Yf ”数据表中的“32”位置出现预测值Yf 1 = 6555.132 ,在“33”Y= 9691.577X= 8270X= 12405位置出现 f 2。这是当f 1和f 2时人均消费支出的点预测值。为了作区间预测,在 X 和 Y 的数据表中,点击“View”选“Descriptive StatsCmmonSample”,则得到 X 和 Y 的描述统计结果,见表:表根据表的数据可计算: x2 = s 2 (n -1) = 2042
15、.6822 (31-1) = 125176492.59ix(X- X )2 = (8270- 7515.026)2 = 569985.74f 1(X- X )2 = (12405- 7515.026)2 = 23911845.72f 2a = 0.05Y取, f 平均值置信度 95%的预测区间为:1( X- X )2Yts+ffa 2n x2i6555.13 2.045 413.15931 +569985.74X= 8270f 1时= 6555.13 162.1031125176492.599691.582.045 413.15931 + 23911845.72X= 12405f 2时= 96
16、91.58499.2531125176492.59即是说,当 X f 1 = 8270 元时, Yf 1 平均值置信度95%的预测区间为(, )元。当X= 12405Yf 2元时, f 2 平均值置信度 95%的预测区间为(,)元。Yf 个别值置信度 95%的预测区间为:1( X- X )2Yts1+ffa 2n x2i6555.13 2.045 413.1593 1+ 1 +569985.74X= 8270f 1时= 6555.13 860.3231125176492.599691.58 2.045 413.1593 1+ 1 +23911845.72X= 12405f 2时= 9691.5
17、8934.4931125176492.59X= 8270Y即是说,当第一步f 1时, f 1 个别值置信度 95%的预测区间为(,)元。当第X= 12405Y二步f 2时, f 2 个别值置信度 95%的预测区间为(,)元。在“E quation ”框中,点击“Forecast”可得预测值及标准误差的图形如图:图案例分析 2一、研究的目的要求案例分析 3近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长%,与此同时国内旅游也迅速增长。改革开放20 多年来,特别是进入 90 年
18、代后,中国的国内旅游收入年均增长%,远高于同期GDP %的增长率。为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。二、模型设定及其估计35经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。为此,考虑的影响因素主要有国内旅游人数X 2 ,城镇居民人均旅游支出 X ,农村居民人均旅游支出X 4 ,并以公路里程X 和铁路里程 X 6 作为相关基础设+施的代表。为此设定了如下对数形式的计量经济模型:=+Ybb Xt122tb X3 3tb X4 4tb X5 5tb Xu6 6tt其中 : Yt 第t 年全国旅游收入X 2
19、国内旅游人数(万人)X3 城镇居民人均旅游支出 (元)X 4农村居民人均旅游支出 (元)X 5 公路里程(万公里) X 6 铁路里程(万公里)为估计模型参数,收集旅游事业发展最快的19942003 年的统计数据,如表所示: 表1994 年2003 年中国旅游收入及相关数据年国内旅游国内旅游城镇居民人均农村居民人均公路里铁路里收入 Y人数 X2旅游支出X3旅 游 支 出 X4程 X5程 X6份(亿元)(万人次)(元)(元)(万公里)(万公里)199452400199562900199663900199764400199869450199971900200074400200178400200287
20、800200387000数据来源:中国统计年鉴 2004利用 Eviews 软件,输入 Y、X2、X3、X4、X5、X6 等数据,采用这些数据对模型进行 OLS 回归,结果如表:表2由此可见,该模型R 2 = 0.9954 , R 2 = 0.9897 可决系数很高,F 检验值,明显显著。但是当a = 0.05时ta(n - k ) = t0.025(10 - 6) = 2.776X,不仅2 、X6 系数的t 检验不显著,而且 X 6 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。计算各解释变量的相关系数,选择 X2、X3、X4、X5、X6 数据,点”view/correlatio
21、ns” 得相关系数矩阵(如表):表由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。三、消除多重共线性采用逐步回归的办法,去检验和解决多重共线性问题。分别作Y 对 X2、X3、X4、X5、X6 的一元回归,结果如表所示:表变量参数估计值X2X3X4X5X6t 统计量R2按 R2 的大小排序为:X3、X6、X2、X5、X4。以 X3 为基础,顺次加入其他变量逐步回归。首先加入X6 回归结果为:Y = -4109.639 + 7.850632X + 285.1784Xt36t=R 2 = 0.957152当取a = 0.05t时, a 2(n - k ) = t
22、0.025(10 - 3) = 2.365,X6 参数的t 检验不显著,予以剔除,加入 X2 回归得Y = -3326.393 + 6.194241X + 0.029761Xt32t=R 2 = 0.973418X2 参数的t 检验不显著,予以剔除,加入X5 回归得Y = -3059.972 + 6.736535X +10.90789Xt35t=R 2 = 0.978028X3、X5 参数的t 检验显著,保留X5,再加入X4 回归得Y = -2441.161+ 4.215884X +13.62909X + 3.221965Xt354t=()R 2 = 0.991445R 2 = 0.98718
23、6F=DW=a = 0.05at(n - k ) = t(10 - 4) = 2.447当取时,20.025,X3、X4、X5 系数的t 检验都显著,这是最后消除多重共线性的结果。X这说明,在其他因素不变的情况下,当城镇居民人均旅游支出 3 和农村居民人均旅游支出ttX 4 分别增长 1 元时,国内旅游收入Y 将分别增长亿元和亿元。在其他因素不变的情况下,X作为旅游设施的代表,公路里程5每增加 1 万公里时, 国内旅游收入Y 将增长亿元。案例分析 4一、问题的提出和模型设定+根据本章引子提出的问题,为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的
24、回归模型。假定医疗机构数与人口数之间满足线性约束,则理论模型设定为Y = b + b Xi12iYXui()其中 i 表示卫生医疗机构数,i 表示人口数。由 2001 年四川统计年鉴得到如下数据。表四川省 2000 年各地区医疗机构数与人口数地区人口数(万人)医疗机构数(个)地区人口数(万人)医疗机构数(个)XYXY成都6304眉山827自贡315911宜宾1530攀枝花103934广安1589泸州1297达州2403德阳1085雅安866绵阳1616巴中1223广元1021资阳1361遂宁3711375阿坝536内江1212甘孜594乐山1132凉山1471南充4064二、参数估计进入 EV
25、iews 软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下表估计结果为Y = -563.0548 + 5.3735 Xii(-1.9311)(8.3403)R2 = 0.7855, s.e. = 508.2665,F = 69.56括号内为t 统计量值。三、检验模型的异方差本例用的是四川省 2000 年各地市州的医疗机构数和人口数,由于地区之间存在的不同人口数,因此,对各种医疗机构的设置数量会存在不同的需求,这种差异使得模型很容易产生异方差,从而影响模型的估计和运用。为此,必须对该模型是否存在异方差进行检验。(一)图形法1、EViews 软件操作。由路径:Quick/
26、Qstimate Equation,进入Equation Specification 窗口,键入“yc x”,确认并“ok”,得样本回归估计结果,见表。(1) 生成残差平方序列。在得到表估计结果后,立即用生成命令建立序 列e 2i ,记为 e2。生成过程如下,先按路径:Procs/Generate Series,进入 Generate Series by Equation 对话框,即图然后,在Generate Series by Equation 对话框中(如图),键入“e2=(resid)2”,则生e 2成序列 i 。e2X(2) 绘制 t 对t 的散点图。选择变量名X 与 e2(注意选择变
27、量的顺序,先选的变量将在 图形 中表 示横 轴, 后 选 的变 量 表 示纵 轴 ), 进入 数 据列 表, 再 按 路径view/graph/scatter,可得散点图,见图。图e22、判断。由图可以看出,残差平方 i 对解释变量X 的散点图主要分布在图形中的下三e2X角部分,大致看出残差平方 i 随i 的变动呈增大的趋势,因此,模型很可能存在异方差。但是否确实存在异方差还应通过更进一步的检验。(二)Goldfeld-Quanadt 检验1、EViews 软件操作。(1) 对变量取值排序(按递增或递减)。在 Procs 菜单里选Sort Series 命令,出现排序对话框,如果以递增型排序,
28、选Ascenging,如果以递减型排序,则应选Descending,键入 X,点ok。本例选递增型排序,这时变量Y 与 X 将以 X 按递增型排序。=(2) 构造子样本区间,建立回归模型。在本例中,样本容量n=21,删除中间 1/4 的观测值,即大约 5 个观测值,余下部分平分得两个样本区间:18 和 1421,它们的样本个nn数均是 8 个,即 12= 8 。在 Sample 菜单里,将区间定义为 18,然后用OLS 方法求得如下结果表在 Sample 菜单里,将区间定义为 1421,再用OLS 方法求得如下结果表(3) 求 F 统计量值。基于表和表中残差平方和的数据,即Sum square
29、d resid 的值。由表计算得到的残差平方和为e2 = 144958.91i, 由表计算得到的残差平方和为 e22i= 734355 .8,根据Goldfeld-Quanadt 检验,F 统计量为e2734355.8F =2ie21i=144958.9= 5.066()(4) 判断。在a = 0.05下,式()中分子、分母的自由度均为 6,查 F 分布表得临界F值 为 0.05(6,6) = 4.28F = 5.066 F,因为0.05(6,6) = 4.28 ,所以拒绝原假设,表明模型确实存在异方差。(三)White 检验由表估计结果,按路径 view/residual tests/whi
30、te heteroskedasticity(no cross terms or cross terms),进入 White 检验。根据White 检验中辅助函数的构造,最后一项为变量的交叉乘积项,因为本例为一元函数,故无交叉乘积项,因此应选no cross terms, 则辅助函数为o 2 = a + a x + a x2 + vt01 t2 t经估计出现White 检验结果,见表。t()从表可以看出, nR2 = 18.0694 ,由 White 检验知,在a = 0.05下,查c 2 分布表,得临界值c 20.05(2) = 5.9915 (在()式中只有两项含有解释变量,故自由度为 2)
31、,比较计算0.05的c 2 统计量与临界值,因为nR2 = 18.0694 c 2 (2) = 5.9915 ,所以拒绝原假设,不拒绝备择假设,表明模型存在异方差。表四、异方差性的修正(一)加权最小二乘法(WLS)111w =1t在运用WLS 法估计过程中,我们分别选用了权数, w =X2it, w =X 23itXt 。权数的生成过程如下,由图,在对话框中的Enter Quation 处,按如下格式分别键入:2w1 = 1/ X ; w2 = 1/ X 2 ; w3 = 1/ sqr ( X ) ,经估计检验发现用权数w t 的效果最好。下2面仅给出用权数w t 的结果。表表的估计结果如下Y
32、 = 368.6090 + 2.9530 Xii(4.3794)(3.5894)R 2 = 0.9387, D.W . = 1.7060, s.e. = 276.0493, F = 12.8838 ()括号中数据为t 统计量值。可以看出运用加权小二乘法消除了异方差性后,参数的t 检验均显著,可决系数大幅提高, F 检验也显著,并说明人口数量每增加1 万人,平均说来将增加个卫生医疗机构,而不是引子中得出的增加个医疗机构。虽然这个模型可能还存在某些其他需要进一步解决的问题,但这一估计结果或许比引子中的结论更为接近真实情况。案例分析 5一、问题的提出和模型设定根据本章引子提出的问题,为了给制定医疗机
33、构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。假定医疗机构数与人口数之间满足线性约束,则理论模型设定为Y = b + b Xi12iYXu+i()其中 i 表示卫生医疗机构数,i 表示人口数。由 2001 年四川统计年鉴得到如下数据。表四川省 2000 年各地区医疗机构数与人口数地区人口数(万人)医疗机构数(个)地区人口数(万人)医疗机构数(个)XYXY成都6304眉山827自贡315911宜宾1530攀枝花103934广安1589泸州1297达州2403德阳1085雅安866绵阳1616巴中1223广元1021资阳1361遂宁3711375阿坝53
34、6内江1212甘孜594乐山1132凉山1471南充4064二、参数估计进入 EViews 软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下表估计结果为Y = -563.0548 + 5.3735 Xii(-1.9311)(8.3403)R2 = 0.7855, s.e. = 508.2665,F = 69.56括号内为t 统计量值。三、检验模型的异方差本例用的是四川省 2000 年各地市州的医疗机构数和人口数,由于地区之间存在的不同人口数,因此,对各种医疗机构的设置数量会存在不同的需求,这种差异使得模型很容易产生异方差,从而影响模型的估计和运用。为此,必须对该模型是
35、否存在异方差进行检验。(一)图形法1、EViews 软件操作。由路径:Quick/Qstimate Equation,进入Equation Specification 窗口,键入“y c x”,确认并“ok”,得样本回归估计结果,见表。(1) 生成残差平方序列。在得到表估计结果后,立即用生成命令建立序 列e2i ,记为 e2。生成过程如下,先按路径:Procs/Generate Series,进入 Generate Series by Equation 对话框,即图然后,在Generate Series by Equation 对话框中(如图),键入“e2=(resid)2”,则生e2成序列
36、i 。e2X(2) 绘制 t 对t 的散点图。选择变量名X 与 e2(注意选择变量的顺序,先选的变量将在 图形 中表 示横 轴, 后 选 的变 量 表 示纵 轴 ), 进入 数 据列 表, 再 按 路径view/graph/scatter,可得散点图,见图。图e22、判断。由图可以看出,残差平方 i 对解释变量X 的散点图主要分布在图形中的下三e2角部分,大致看出残差平方 i 随Xi 的变动呈增大的趋势,因此,模型很可能存在异方差。但是否确实存在异方差还应通过更进一步的检验。(二)Goldfeld-Quanadt 检验1、EViews 软件操作。(1) 对变量取值排序(按递增或递减)。在 Pr
37、ocs 菜单里选Sort Series 命令,出现排序对话框,如果以递增型排序,选Ascenging,如果以递减型排序,则应选Descending,键入 X,点ok。本例选递增型排序,这时变量Y 与 X 将以 X 按递增型排序。=(2) 构造子样本区间,建立回归模型。在本例中,样本容量n=21,删除中间 1/4 的观测值,即大约 5 个观测值,余下部分平分得两个样本区间:18 和 1421,它们的样本个nn数均是 8 个,即 12= 8 。在 Sample 菜单里,将区间定义为 18,然后用OLS 方法求得如下结果表在 Sample 菜单里,将区间定义为 1421,再用OLS 方法求得如下结果
38、表(3) 求 F 统计量值。基于表和表中残差平方和的数据,即Sum squared resid 的值。e2 = 144958.9由表计算得到的残差平方和为1i, 由表计算得到的残差平方和为 e22i= 734355 .8,根据Goldfeld-Quanadt 检验,F 统计量为e2734355.8F =2ie21i=144958.9= 5.066()(4) 判断。在a = 0.05下,式()中分子、分母的自由度均为 6,查 F 分布表得临界F值 为 0.05(6,6) = 4.28F = 5.066 F,因为0.05(6,6) = 4.28 ,所以拒绝原假设,表明模型确实存在异方差。(三)Wh
39、ite 检验由表估计结果,按路径 view/residual tests/white heteroskedasticity(no cross terms or cross terms),进入 White 检验。根据White 检验中辅助函数的构造,最后一项为变量的交叉乘积项,因为本例为一元函数,故无交叉乘积项,因此应选no cross terms, 则辅助函数为o 2 = a + a x + a x2 + vt01 t2 t经估计出现White 检验结果,见表。t()从表可以看出, nR 2 = 18.0694 ,由 White 检验知,在a = 0.05下,查c 2 分布表,得临界值c 20
40、.05(2) = 5.9915(在()式中只有两项含有解释变量,故自由度为 2),比较计算0.05的c 2 统计量与临界值,因为nR2 = 18.0694 c 2 (2) = 5.9915 ,所以拒绝原假设,不拒绝备择假设,表明模型存在异方差。表四、异方差性的修正(一)加权最小二乘法(WLS)111w =1t在运用WLS 法估计过程中,我们分别选用了权数, w =X2it, w =X 23itXt 。权数的生成过程如下,由图,在对话框中的Enter Quation 处,按如下格式分别键入:2w1 = 1/ X ; w2 = 1/ X 2 ; w3 = 1/ sqr ( X ) ,经估计检验发现用权数w t 的效果最好。下2面仅给出用权数w t 的结果。表表的估计结果如下Y = 368.6090 + 2