《等差数列及通项公式优秀PPT.ppt》由会员分享,可在线阅读,更多相关《等差数列及通项公式优秀PPT.ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、等差数列及通项公式第一页,本课件共有13页复习数列的有关概念1按一定的次序排列的一列数叫做数列。数列中的每一个数叫做这个数列的项。数列中的各项依次叫做这个数列的第1项(或首项)用 表示,第2项用 表示,第n项用 表示,数列的一般形式可以写成:,简记作:第二页,本课件共有13页复习数列的有关概念2 如果数列 的第n项 与n之间的关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式。叫做数列 的前n项和。第三页,本课件共有13页等差数列的有关概念观察数列 (1)4,5,6,7,8,9,10.(2)1,4,7,10,13,16,(3)7x,3x,-x,-5x,-9x,(4)2,0,-2,-4,
2、-6,(5)5,5,5,5,5,5,(6)0,0,0,0,0,定义:如果一个数列从第定义:如果一个数列从第2项起,每一项与它的前一项的差等于项起,每一项与它的前一项的差等于同一个同一个常数常数(指与指与n无关的数无关的数),这个数列就叫做),这个数列就叫做等差数列等差数列,这个,这个常数常数叫做叫做等差数列等差数列的的公差公差,公差公差通常用字母通常用字母d表示。表示。以上以上6个数列的公差分别为个数列的公差分别为公差公差 d=1 递增数列递增数列公差公差 d=3 递增数列递增数列公差公差 d=-4x公差公差 d=-2 递减数列递减数列公差公差 d=0 非零非零常数列常数列公差公差 d=0 零
3、零常数列常数列因为x的正负性不确定,所以该数列的增减性尚不能确定。第四页,本课件共有13页等差数列的通项公式如果一个数列如果一个数列是等差数列,它的公差是是等差数列,它的公差是d,那么,那么,由此可知,等差数列由此可知,等差数列 的通项公式为的通项公式为当d0时,这是关于n的一个一次函数。第五页,本课件共有13页等差数列的图象1(1)数列:-2,0,2,4,6,8,10,12345678910123456789100第六页,本课件共有13页等差数列的图象2(2)数列:7,4,1,-2,12345678910123456789100第七页,本课件共有13页等差数列的图象3(1)数列:4,4,4,
4、4,4,4,4,12345678910123456789100第八页,本课件共有13页等差中项 观察如下的两个数之间,插入一个什么数后者三个数就会成为一个观察如下的两个数之间,插入一个什么数后者三个数就会成为一个等差数列:等差数列:(1)2,4 (2)-1,5(3)-12,0 (4)0,032-60 如果在如果在a与与b中间插入一个数中间插入一个数A,使,使a,A,b成等差数列,那成等差数列,那么么A叫做叫做a与与b的的等差中项等差中项。第九页,本课件共有13页等差数列的的例题1-2例例1 求等差数列求等差数列8,5,2,的第,的第20项。项。解:解:例例2 等差数列等差数列-5,-9,-13
5、,的第几项是,的第几项是 401?解:解:因此,因此,解得解得答:这个数列的第答:这个数列的第100项是项是-401.第十页,本课件共有13页等差数列的的例题等差数列的的例题3 3 例例3 梯子的最高一级宽梯子的最高一级宽33cm,最低一级宽,最低一级宽110cm,中间还,中间还有有10级级.计算中间各级的宽计算中间各级的宽.解:解:用用 表示题中的等差数列,由已知条件,有表示题中的等差数列,由已知条件,有即即 110=33+11d,解得解得 d=7因此因此,答:梯子中间各级的宽从上到下依次是答:梯子中间各级的宽从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.第十一页,本课件共有13页等差数列的的练习11.求等差数列求等差数列3,7,11,的第的第4,7,10项;项;2.求等差数列求等差数列10,8,6,的第的第20项;项;3.求等差数列求等差数列2,9,16,的第的第n项;项;4.求等差数列求等差数列0,-7/2,-7的第的第n+1项;项;第十二页,本课件共有13页等差数列的作业祝同学们学习愉快,人人成绩优异!第十三页,本课件共有13页