九年级数学下册第27章二次函数27.1二次函数课件华东师大版2020032541.ppt

上传人:仙*** 文档编号:65264459 上传时间:2022-12-04 格式:PPT 页数:26 大小:2.11MB
返回 下载 相关 举报
九年级数学下册第27章二次函数27.1二次函数课件华东师大版2020032541.ppt_第1页
第1页 / 共26页
九年级数学下册第27章二次函数27.1二次函数课件华东师大版2020032541.ppt_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《九年级数学下册第27章二次函数27.1二次函数课件华东师大版2020032541.ppt》由会员分享,可在线阅读,更多相关《九年级数学下册第27章二次函数27.1二次函数课件华东师大版2020032541.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第27章 二次函数27.1 二次函数1.1.探索具体问题中的数量关系和变化规律探索具体问题中的数量关系和变化规律2.2.结合具体情境体会二次函数作为一种数学模型的结合具体情境体会二次函数作为一种数学模型的 意义,并了解二次函数的有关概念意义,并了解二次函数的有关概念我们学习过哪些函数?我们学习过哪些函数?一次函数一次函数 y=kx+b(k0y=kx+b(k0)正比例函数正比例函数 y=kx(k0y=kx(k0)反比例函数反比例函数1.1.如如图图,设设矩矩形形花花圃圃的的垂垂直直于于墙墙的的一一边边ABAB的的长长为为,矩矩形形的的面面积积为为y y 2 2能能用含用含x x的代数式来表示的代

2、数式来表示y y吗?吗?要用长为要用长为20 m20 m的铁栏杆,一面靠墙,围成一个矩形的铁栏杆,一面靠墙,围成一个矩形的花圃的花圃.怎样围法才能使围成的花圃的面积最大?怎样围法才能使围成的花圃的面积最大?x xx x20-2x20-2xB BC CD DA A【做一做做一做】2.2.试填下面的表试填下面的表.3.x3.x的值可以任意取吗?有限定范围吗?的值可以任意取吗?有限定范围吗?4.4.我们发现我们发现y y是是x x的函数,试写出这个函数的关系式的函数,试写出这个函数的关系式.ABAB长()长()1 12 23 34 45 56 67 78 89 9BCBC长()长()1212面积(面

3、积()4848ABAB长()长()BCBC长()长()1212面积(面积()4848y=x(20-2x)(0 x10)y=x(20-2x)(0 x10)或或y=-2xy=-2x2 2+20 x(0 x10)+20 x(0 x10)181818183232141442421616101050508 848486 642424 4323218182 2解析:解析:某商店将每件进价为某商店将每件进价为8 8元的某种商品按每件元的某种商品按每件1010元出售,一元出售,一天可售出约天可售出约100100件件.该店想通过降低售价、增加销售量的办该店想通过降低售价、增加销售量的办法来提高利润法来提高利润.

4、经过市场调查,发现这种商品单价每降低经过市场调查,发现这种商品单价每降低0.10.1元,其销售量可增加约元,其销售量可增加约1010件件.将这种商品的售价降低多将这种商品的售价降低多少时,能使销售利润最大?少时,能使销售利润最大?1.1.设每件商品降低设每件商品降低x x元(元(0 x20 x2),该商品每天的利润为),该商品每天的利润为y y元,元,y y是是x x的函数吗?的函数吗?2.2.怎样写出该关系式?怎样写出该关系式?利润利润=(售价(售价-进价)进价)销售量销售量单件利润单件利润(元)(元)每天销量(件)每天销量(件)每天利润(每天利润(y y元元)降价降价x x元前元前降价降价

5、x x元后元后100100(10-8)(10-8)10010010-810-810-x-810-x-8(10-x-8)(100+100 x)(10-x-8)(100+100 x)100+100 x100+100 xy=(10-x-8)(100+100 x)y=(10-x-8)(100+100 x)即即y=-100 xy=-100 x2 2+100 x+200(0 x2)+100 x+200(0 x2)解析:解析:讨论:讨论:得到的两个函数关系式有什么共同特点得到的两个函数关系式有什么共同特点?答答:(1)(1)右边都是关于右边都是关于x x的整式的整式.(2)(2)自变量自变量x x的最高次数

6、是的最高次数是2.2.即都是自变量的二次整式即都是自变量的二次整式.观察:观察:(1 1)y=-2xy=-2x2 2+20 x(0 x10)+20 x(0 x10)(2 2)y=-100 xy=-100 x2 2+100 x+200(0 x2)+100 x+200(0 x2)提问:提问:对比一次函数,归纳二次函数的定义?对比一次函数,归纳二次函数的定义?【想一想想一想】y=axy=ax2 2 +bx+c+bx+c定义:定义:形如形如y=axy=ax2 2+bx+c(a,b,c+bx+c(a,b,c是常数,是常数,a0)a0)的函数叫的函数叫做二次函数做二次函数.如:如:y=5 xy=5 x2

7、2+100 x+63+100 x+63a a5 5100100b b6363c c思考:思考:由问题由问题1 1和和2 2你认为判断一个函数是否是二次函数的你认为判断一个函数是否是二次函数的关键是什么?关键是什么?判断一个函数是否是二次函数的关键是:看二次项的系判断一个函数是否是二次函数的关键是:看二次项的系数是否为数是否为0 01.1.上述概念中的上述概念中的a a为什么不能是为什么不能是0 0?2.2.对于二次函数对于二次函数y=axy=ax2 2+bx+c+bx+c中的中的b b和和c c可否为可否为0 0?若?若b b和和c c各自各自为为0 0或均为或均为0 0,上述函数的式子可以改

8、写成怎样?你认为它,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?们还是不是二次函数?【议一议议一议】【规律方法规律方法】二次函数的一般形式是二次函数的一般形式是y=axy=ax2 2+bx+c+bx+c(a,b,c(a,b,c是常数,是常数,a0)a0)常见的几种特殊形式:常见的几种特殊形式:(1 1)y=axy=ax2 2 (a0a0,但是,但是b bc c0 0)(2 2)y=axy=ax2 2bx (a0bx (a0,且,且b0,b0,而而c c0 0)(3 3)y=axy=ax2 2c (a0c (a0,且,且c0,c0,而而b b0 0)像这些形式的函数都属于二次函数像

9、这些形式的函数都属于二次函数.例例1.1.下列函数中,哪些是二次函数?哪些不是二次函数?下列函数中,哪些是二次函数?哪些不是二次函数?(1)y=3x-1 ()(2)y=3x(1)y=3x-1 ()(2)y=3x2 2()(3)y=3x(3)y=3x3 3+2x+2x2 2 ()()(4)y=2x(4)y=2x2 2-2x+1()-2x+1()(5)y=x(5)y=x-2-2+x ()(6)y=x+x ()(6)y=x2 2-x(1+x)()-x(1+x)()不是不是是是不是不是不是不是是是不是不是【例题例题】思考:二次函数的一般式思考:二次函数的一般式y yaxax2 2bxbxc c(a a

10、 0 0)与一元)与一元二次方程二次方程axaxbxbxc c0 0(a a 0 0)有什么联系和区别?)有什么联系和区别?联系:联系:(1)(1)等式一边都是等式一边都是axax2 2bxbxc c且且a a0 0 (2)(2)方程方程axax2 2bxbxc=0c=0可以看成是函数可以看成是函数 y=ax y=ax2 2bxbxc c中中y=0y=0时得到的时得到的.区别区别:前者是函数前者是函数.后者是方程后者是方程.等式另一边前者是等式另一边前者是y,y,后者是后者是0.0.【想一想想一想】m m2 2-2m-1=2-2m-1=2,m+10m+10,m=3m=3例例2.m2.m取何值时

11、,函数取何值时,函数y=(m+1)x +(m-3)x+m y=(m+1)x +(m-3)x+m 是二是二次函数?次函数?解解:由题意得由题意得【例题例题】例例3.3.若函数若函数 y y=(m+3)x=(m+3)x+(m+2)x+2+(m+2)x+2,当当m m 时,函数是二次函数,时,函数是二次函数,当当m=m=时,函数是一次函数时,函数是一次函数.-3-3-3-3分析:分析:当函数是二次函数时,其二次项系数当函数是二次函数时,其二次项系数a a不能等于不能等于0 0;而当函数是一次函数时,二次项系数为;而当函数是一次函数时,二次项系数为0 0,而一次项,而一次项系数不为系数不为0.0.【例

12、题例题】例例4.4.(1)(1)写出正方体的表面积写出正方体的表面积S S与正方体棱长与正方体棱长a a之间的函数关之间的函数关系,并说出是什么函数系,并说出是什么函数.(2)(2)菱形的两条对角线的和为菱形的两条对角线的和为26cm26cm,求菱形的面积,求菱形的面积S S与一对与一对角线角线x x之间的函数关系,并说出是什么函数之间的函数关系,并说出是什么函数.解:解:S=6aS=6a2 2,它是一个关于,它是一个关于a a的二次函数的二次函数.解:解:S=x(26-x)S=x(26-x)=-x =-x2 2+13x+13x(0 x260 x26)它是一个关于它是一个关于x x的二次函数的

13、二次函数.【例题例题】1.1.下列函数中下列函数中,哪些是二次函数?哪些不是二次函数?哪些是二次函数?哪些不是二次函数?(1 1)y=3(x-1)y=3(x-1)+1.+1.(3 3)s=3-2ts=3-2t.(5 5)y=(x+3)y=(x+3)-x-x.(6 6)v=10rv=10r.(是)(是)(不是)(不是)(是)(是)(不是)(不是)(不是)(不是)(是)(是)【跟踪训练跟踪训练】解:解:S=a(-a)=a(30-a)=30a-aS=a(-a)=a(30-a)=30a-a=-a=-a+30a.+30a.是函数关系是函数关系,且是二次函数关系且是二次函数关系.2.2.用长为用长为60

14、m60 m的篱笆围成矩形场地,场地面积的篱笆围成矩形场地,场地面积S(mS(m)与与矩形一边长矩形一边长a(m)a(m)之间的关系是什么?是函数关系吗?是之间的关系是什么?是函数关系吗?是哪一种函数?哪一种函数?4.4.如果函数如果函数y=(k-3)+kx+1y=(k-3)+kx+1是二次函数是二次函数,则则k k的值是的值是_._.0 03.3.如果函数如果函数y=+kx+1y=+kx+1是二次函数是二次函数,则则k k的值的值是是_._.0 0或或3 31.1.物体从某一高度落下物体从某一高度落下,已知下落的高度已知下落的高度h(m)h(m)与下落的时间与下落的时间t(s)t(s)的关系是

15、的关系是:h=4.9t:h=4.9t2 2,填表表示物体下落的高度填表表示物体下落的高度:t/st/s1 12 23 34 45 5h/mh/m4.94.919.619.644.144.178.478.4122.5122.52.2.某工厂计划为一批长方体形状的产品涂上油漆某工厂计划为一批长方体形状的产品涂上油漆,长方体长方体的长和宽相等的长和宽相等,高比长多高比长多0.5 m.0.5 m.(1)(1)长方体的长和宽用长方体的长和宽用x(m)x(m)表示表示,长方体需要涂漆的表面积长方体需要涂漆的表面积S S(m(m2 2)如何表示如何表示?(2)(2)如果涂漆每平方米所需要的费用是如果涂漆每平

16、方米所需要的费用是5 5元元,涂漆每个长方涂漆每个长方体所需要的费用用体所需要的费用用y(y(元元)表示表示,那么那么y y的表达式是什么的表达式是什么?解析:解析:(1 1)S=2xS=2x2 2+x(x+0.5)+x(x+0.5)4=6x4=6x2 2+2x+2x(2 2)y=5S=5y=5S=5(6x(6x2 2+2x)+2x)y=30 x y=30 x2 2+10 x+10 x3.3.若函数若函数 为为二次函数,求二次函数,求m m的的值值.【解析解析】因为该函数为二次函数,因为该函数为二次函数,则则解解得:得:m=2m=2或或m=-1m=-1解解得:得:所以所以m=2.m=2.【规律

17、方法规律方法】1.1.关于关于x x的二次函数表达式的二次函数表达式y=axy=ax+bx+c+bx+c的代数式一定是的代数式一定是整式整式,a,b,c,a,b,c为常数为常数,且且 a0.a0.2.2.等式的右边最高次数为等式的右边最高次数为2,2,可以没有一次项和常数项可以没有一次项和常数项,但但不能没有二次项不能没有二次项.1.1.定义:形如定义:形如y=axy=ax+bx+c(a,b,c+bx+c(a,b,c是常数是常数,a0),a0)的函数叫做的函数叫做二次函数二次函数.2.y=ax2.y=ax+bx+c(a,b,c+bx+c(a,b,c是常数是常数,a0),a0)的几种不同表示形式的几种不同表示形式:(1)y=ax(1)y=ax(a0,b=0,c=0).(a0,b=0,c=0).(2)y=ax(2)y=ax+c(a0,b=0,c0).+c(a0,b=0,c0).(3)y=ax(3)y=ax+bx(a0,b0,c=0).+bx(a0,b0,c=0).3.3.定义的实质是:定义的实质是:axax+bx+c+bx+c是整式是整式,自变量自变量x x的最高次数是的最高次数是2,2,自变量自变量x x的取值范围是全体实数的取值范围是全体实数.失败往往是黎明前的黑暗,继之而出现的就是成功的朝霞.霍奇斯

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁