《15函数y=Asin(ωx+φ)的图象(二).ppt》由会员分享,可在线阅读,更多相关《15函数y=Asin(ωx+φ)的图象(二).ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二课时第二课时1.5 1.5 函数函数 的图象的图象问题提出问题提出1.1.函数函数 图象是由函数图象是由函数 的图象经过怎样的变换而得到的?的图象经过怎样的变换而得到的?的图象,可以看作是把正的图象,可以看作是把正弦曲线弦曲线 上所有的点向左(当上所有的点向左(当 0 0时)或向右(当时)或向右(当 0 0时)平行时)平行移动移动|个单位长度而得到个单位长度而得到.2.2.函数函数 的图象是由函数的图象是由函数 的图象经过怎样的变换而的图象经过怎样的变换而得到的?得到的?函数函数 的图象,可以看作是的图象,可以看作是把函数把函数 的图象上所有点的的图象上所有点的横坐标缩短(当横坐标缩短(当
2、 1 1时)或伸长(当时)或伸长(当0 0 1 1时)到原来的时)到原来的 倍(纵坐标不变)倍(纵坐标不变)而得到的而得到的.3.3.函数函数 的图象,不仅的图象,不仅受受 、的影响,而且受的影响,而且受A A的影响,对此,的影响,对此,我们再作进一步探究我们再作进一步探究.探究一:对探究一:对 的图象的影响的图象的影响 2 2o oy yx x2-2-2-2-思考思考1 1:函数函数 的周期是多少的周期是多少?如何用?如何用“五点法五点法”画出该函数在一个画出该函数在一个周期内的图象?周期内的图象?思考思考2 2:比较函数比较函数 与函数与函数 的图象的形状和位置,你有的图象的形状和位置,你
3、有什么发现?什么发现?2 2o oy yx x2-2-2-2-函数函数 的图象,可以看作的图象,可以看作是把是把 的图象上所有的点的图象上所有的点纵坐标伸长到原来的纵坐标伸长到原来的2 2倍(横坐标不倍(横坐标不变)而得到的变)而得到的.2 2o oy yx x2-2-2-2-思考思考3 3:用五点法作出函数用五点法作出函数 在一个周期内的图象,比较它与函数在一个周期内的图象,比较它与函数 的图象的形状和位置,你又的图象的形状和位置,你又有什么发现?有什么发现?2 2o oy yx x1-1-1-1-函数函数 的图象,可以看的图象,可以看作是把作是把 的图象上所有的点的图象上所有的点纵坐标缩短
4、到原来的纵坐标缩短到原来的 倍(横坐标不变)倍(横坐标不变)而得到的而得到的.2 2o oy yx x1-1-1-1-思考思考4 4:一般地,对任意的一般地,对任意的A A(A A0 0且且A1A1),函数),函数 的图象的图象是由函数是由函数 的图象经过怎的图象经过怎样的变换而得到的?样的变换而得到的?函数函数 的图象,可以看的图象,可以看作是把函数作是把函数 的图象上所的图象上所有点的纵坐标伸长(当有点的纵坐标伸长(当A A1 1时)或缩短时)或缩短(当(当0 0A A1 1时)到原来的时)到原来的A A倍(横坐标倍(横坐标不变)而得到的不变)而得到的.思考思考5 5:上述变换称为上述变换
5、称为振幅变换振幅变换,据此,据此理论,函数理论,函数 的图象是由的图象是由函数函数 的图象经过怎样的变的图象经过怎样的变换而得到的?换而得到的?函数函数 的图象,可以看作是的图象,可以看作是把把 的图象上所有的点纵坐的图象上所有的点纵坐标伸长到原来的标伸长到原来的1.51.5倍(横坐标不变)倍(横坐标不变)而得到的而得到的.探究(二):探究(二):与与 的图象关系的图象关系 思考思考2 2:你能设计一个变换过程完成上你能设计一个变换过程完成上述变换吗?述变换吗?左移左移思考思考1 1:将函数将函数 的图象经过几次的图象经过几次变换,可以得到函数变换,可以得到函数 的图象的图象?横坐标缩短到原来
6、的横坐标缩短到原来的纵坐标伸长到原来的纵坐标伸长到原来的3 3倍倍思考思考3 3:一般地,函数一般地,函数 (A A0 0,0 0)的图象,可以由函数)的图象,可以由函数 的图象经过怎样的变换而得到?的图象经过怎样的变换而得到?先把函数先把函数 的图象向左(右)平移的图象向左(右)平移|个单位长度,得到函数个单位长度,得到函数 的的图象;再把曲线上各点的横坐标变为原图象;再把曲线上各点的横坐标变为原来的来的 倍,得到函数倍,得到函数 的图的图象;然后把曲线上各点的纵坐标变为原象;然后把曲线上各点的纵坐标变为原来的来的A A倍,就得到函数倍,就得到函数 的图象的图象.思考思考4 4:将函数将函数
7、 的图象变换到函的图象变换到函数数 (其中(其中A A0 0,0 0)的)的图象,共有多少种不同的变换次序?图象,共有多少种不同的变换次序?思考思考5 5:若将函数若将函数 的图象先作振的图象先作振幅变换,再作周期变换,然后作平移变幅变换,再作周期变换,然后作平移变换得到函数换得到函数 的图象,具体如的图象,具体如何操作?何操作?左移左移横坐标缩短到原来的横坐标缩短到原来的纵坐标伸长到原来的纵坐标伸长到原来的3 3倍倍思考思考6 6:物理中,简谐运动的图象就是函物理中,简谐运动的图象就是函数数 ,的图象,其中的图象,其中A A0 0,0.0.描述简谐运动的物理量有振描述简谐运动的物理量有振幅、
8、周期、频率、相位和初相等,你知幅、周期、频率、相位和初相等,你知道这些物理量分别是指那些数据以及各道这些物理量分别是指那些数据以及各自的含义吗?自的含义吗?称为初相称为初相,即即x=0 x=0时的相位时的相位.A A是振幅,它是指物体离开平衡位置的最是振幅,它是指物体离开平衡位置的最大距离;大距离;是周期,它是指物体往复运动一是周期,它是指物体往复运动一次所需要的时间;次所需要的时间;是频率,它是指物体在单位时是频率,它是指物体在单位时间内往复运动的次数;间内往复运动的次数;称为相位称为相位;理论迁移理论迁移 例例1 1 说明函数说明函数 的图象是的图象是由函数由函数 的图象经过怎样的变换的图
9、象经过怎样的变换而得到的?而得到的?右移右移横坐标伸长到原来的横坐标伸长到原来的3 3倍倍纵坐标伸长到原来的纵坐标伸长到原来的2 2倍倍 例例2 2 如图是某简谐运动的图象,试根如图是某简谐运动的图象,试根据图象回答下列问题:据图象回答下列问题:2x/sABCDEFy/cm0.40.81.2O-2-2 这个简谐运动的振这个简谐运动的振幅、周期与频率各是幅、周期与频率各是多少?多少?从从O O点算起,到曲点算起,到曲线上的哪一点,表示线上的哪一点,表示完成了一次往返运动完成了一次往返运动?如从?如从A A点算起呢?点算起呢?写出这个简谐运动的表达式写出这个简谐运动的表达式.2x/sABCDEFy
10、/cm0.40.81.2O-2-2 这个简谐运动的振幅、周期与频这个简谐运动的振幅、周期与频率各是多少?率各是多少?振幅振幅A=2A=2周期周期T=0.8sT=0.8s频率频率f=1.25f=1.25 从从O O点算起,到曲线上的哪一点,点算起,到曲线上的哪一点,表示完成了一次往返运动?如从表示完成了一次往返运动?如从A A点算点算起呢?起呢?2x/sABCDEFy/cm0.40.81.2O-2-2O OD DA AE E 写出这个简谐运动的表达式写出这个简谐运动的表达式.2x/sABCDEFy/cm0.40.81.2O-2-2小结作业小结作业1.1.函数函数 (A A0 0,0 0)的)的图
11、象,可以由函数图象,可以由函数 的图象通过的图象通过三次变换而得到,共有三次变换而得到,共有6 6种不同的变换种不同的变换次序次序.在实际应用中,一般按在实际应用中,一般按“左右平左右平移移横向伸缩横向伸缩纵向伸缩纵向伸缩”的次序进行的次序进行.2.2.用用“变换法变换法”作函数作函数 的图象,其作图过程较复杂,不便于的图象,其作图过程较复杂,不便于操作,在一般情况下,常用操作,在一般情况下,常用“五点法五点法”作图作图.3.3.通过平移,将函数通过平移,将函数 的图象的图象变换为变换为 的图象,其平移的图象,其平移单位是单位是 .4.4.若已知函数若已知函数 的图象及的图象及有关数字特征,则可以求出函数的解有关数字特征,则可以求出函数的解析式析式.作业:作业:P56 P56 练习:练习:3 3,4.4.(书书)P58P58习题习题1.5A1.5A组:组:3,43,4,5.5.CBCDC