江西省萍乡市高中数学 第一章 立体几何初步 1.6.1.2 平面与平面垂直的判定课件 北师大必修2.ppt

上传人:赵** 文档编号:64015764 上传时间:2022-11-28 格式:PPT 页数:26 大小:532.50KB
返回 下载 相关 举报
江西省萍乡市高中数学 第一章 立体几何初步 1.6.1.2 平面与平面垂直的判定课件 北师大必修2.ppt_第1页
第1页 / 共26页
江西省萍乡市高中数学 第一章 立体几何初步 1.6.1.2 平面与平面垂直的判定课件 北师大必修2.ppt_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《江西省萍乡市高中数学 第一章 立体几何初步 1.6.1.2 平面与平面垂直的判定课件 北师大必修2.ppt》由会员分享,可在线阅读,更多相关《江西省萍乡市高中数学 第一章 立体几何初步 1.6.1.2 平面与平面垂直的判定课件 北师大必修2.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第2课时平面与平面垂直的判定2021/8/8 星期日11.了解二面角的概念.2.掌握平面与平面垂直的判定定理.3.能运用面面垂直的判定定理证明面面的垂直关系.2021/8/8 星期日21.二面角(1)定义:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.从一条直线出发的两个半平面所组成的图形叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作这个二面角的平面角.二面角的大小用它的平面角来度量,平面角的度数就是二面角的度数.平面角是直角的二面角叫作直

2、二面角.2021/8/8 星期日3(3)记法:以直线AB为棱、半平面,为面的二面角,记作二面角-AB-,如图所示.名名师师点点拨拨二面角的概念是平面几何中角的概念的扩展和延伸.平面角是从平面内一点出发的两条射线(半直线)所组成的图形,二面角是从空间一直线出发的两个半平面所组成的图形;平面角可以看作是一条射线绕端点旋转而成,二面角可以看作是一个半平面以其棱为轴旋转而成.二面角定量地反映了两个相交平面的位置关系.2021/8/8 星期日4【做一做1】有下列说法:两个相交平面所组成的图形叫作二面角;二面角的平面角是从棱上一点出发,分别在两个半平面内作射线所成的角;二面角的平面角的大小与其平面角的顶点

3、在棱上的位置有关系.其中正确说法的个数是()A.0B.1C.2D.3答案:A2021/8/8 星期日52.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:在画两个垂直的平面时,通常把表示直立平面的平行四边形的竖边画成和表示水平平面的平行四边形的横边垂直.如图所示.2021/8/8 星期日6(3)判定定理:2021/8/8 星期日7名名师师点点拨拨平面与平面垂直的判定定理告诉我们,可以通过直线与平面垂直来证明平面与平面垂直.通常我们将其记为“若线面垂直,则面面垂直”.也就是说证明平面与平面垂直,只要在一个平面内找到一条直线和另一个平面垂直即

4、可.2021/8/8 星期日8【做一做2】已知直线l平面,l平面,则()A.B.C.或D.与相交但不一定垂直答案:A2021/8/8 星期日9题型一题型二题型三分析:条件中给出了线面垂直及底面梯形的形状.证明本题的突破口是在其中一个平面内找一条直线垂直于另外一个平面.2021/8/8 星期日10题型一题型二题型三反思反思证明面面垂直有两个途径:一是定义,二是证明线面垂直,二者都是通过线线垂直来完成的.如果题目给出了长度、角度等条件,可以考虑用勾股定理或求角来证线线垂直,所以空间问题平面化是解决立体几何问题的重要思想.2021/8/8 星期日11题型一题型二题型三【变式训练1】在三棱锥S-ABC

5、中,BSC=90,ASB=60,ASC=60,SA=SB=SC.求证:平面ABC平面SBC.证明:方法一:如图所示,取BC的中点D,连接AD,SD.由题意知ASB与ASC是等边三角形,则AB=AC.ADBC,SDBC.AD2+SD2=SA2,即ADSD.又ADBC,SDBC=D,AD平面SBC.AD平面ABC,平面ABC平面SBC.2021/8/8 星期日12题型一题型二题型三方法二:SA=SB=SC=a,又ASB=ASC=60,ASB,ASC都是等边三角形.AB=AC=a.作AD平面BSC于点D,AB=AC=AS,D为BSC的外心.又BSC是以BC为斜边的直角三角形,D为BC的中点,故AD平

6、面ABC.平面ABC平面SBC.2021/8/8 星期日13题型一题型二题型三【例2】如图所示,在正四棱锥P-ABCD中,PO底面ABCD,O为正方形ABCD的中心,PO=1,AB=2,求二面角P-AB-D的平面角的大小.分析:先找出二面角的平面角,再放在直角三角形中求解.2021/8/8 星期日14题型一题型二题型三2021/8/8 星期日15题型一题型二题型三2021/8/8 星期日16题型一题型二题型三2021/8/8 星期日17题型一题型二题型三易错点:对定理理解不准确而致误【例3】,为不重合的两个平面,给出下列说法:(1)若内的两条相交直线分别平行于平面,则平行于.(2)若外一条直线

7、l与内的一条直线平行,则l和平行.(3)设和相交于直线l,若内有一条直线垂直于l,则和垂直.(4)若b为中的一条直线,平面垂直于平面,则b垂直于平面.上面说法正确的序号是(写出所有的正确序号).错解:(1)(2)(4)错因分析:对于(4)因对情况考虑不周而误认为只有b垂直于这一种情况.2021/8/8 星期日18题型一题型二题型三正解:(1)若内的两条相交直线分别平行于平面,则两条相交直线确定的平面平行于平面,正确.(2)若平面外的一条直线l与内的一条直线平行,则l平行于,正确.(3)如图所示,=l,a,al,但不一定有,错误.(4)b与的位置关系为相交、平行或b,错误.答案:(1)(2)20

8、21/8/8 星期日19题型一题型二题型三【变式训练3】设m,n是两条不同的直线,是三个不同的平面,给出下列三个命题,其中正确命题的序号是.(1)若m,n,则mn;(2)若,m,则m;(3)若m,n,则mn.解析:(1)若m,n,则mn,正确;(2)若,m,则m,正确;(3)两条直线还可能相交或异面,错误.答案:(1)(2)2021/8/8 星期日201 2 3 4 51下列命题:两个相交平面组成的图形叫做二面角;异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角相等或互补;二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;二面角的大小与其平面角的顶点在

9、棱上的位置没有关系,其中正确的是()A.B.C.D.答案:B2021/8/8 星期日211 2 3 4 52.如图所示,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是()A.BC平面PDFB.DF平面PAEC.平面PDF平面ABCD.平面PAE平面ABC解析:由题意知BCDF,则BC平面PDF成立;因为BCPE,BCAE,且PEAE=E,所以BC平面PAE,则DF平面PAE成立,平面PAE平面ABC也成立.答案:C2021/8/8 星期日223.给出下列四个命题:若直线l与平面内无数条直线垂直,则直线l平面;平面与分别过两条互相垂直的直线,则;若直线l平

10、面,则存在a,使la;若平面内的一条直线垂直于平面内的两条相交直线,则.其中正确命题的个数为()A.1B.2C.3D.0解析:当l与平面内无数条互相平行的直线垂直时,l不一定与垂直,故错误;当平面与分别过两条互相垂直的直线时,可能垂直,也可能不垂直,故错误;根据直线与平面垂直的定义,知直线l平面时,l与内的所有直线都垂直,在内不可能存在直线与l平行,故错误;根据线面垂直和面面垂直的判定定理知正确.故选A.答案:A1 2 3 4 52021/8/8 星期日231 2 3 4 54.在正方体ABCD-A1B1C1D1中,平面BD1D与平面D1C1CD所成的角的大小为.解析:如图所示,因为DD1平面ABCD,所以BDD1D,又CDD1D,所以CDB即为平面BD1D与平面D1C1CD所成的角,其大小为45.答案:452021/8/8 星期日241 2 3 4 55如图所示,在三棱台ABC-A1B1C1中,BAC=90,AA1平面ABC,AB=AC,D为BC的中点.求证:平面A1AD平面BCC1B1.证明:AC=AB,D为BC的中点,BCAD.又AA1平面ABC,AA1BC.又AA1AD=A,BC平面A1AD.BC平面BCC1B1,平面A1AD平面BCC1B1.2021/8/8 星期日252021/8/8 星期日26

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁