《15章电力系统稳定运行的基本概念.ppt》由会员分享,可在线阅读,更多相关《15章电力系统稳定运行的基本概念.ppt(55页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第15章 电力系统稳定运行的基本概念15-1 概 述 稳定运行状态:系统中的同步电机(主要是发电机)都处于同步运行状态。即所有并联运行的同步电机都有相同的电角速度。电力系统稳定性问题:电力系统在运行中受到扰动后能否继续保持系统中同步电机间同步运行的问题。由于稳定性是根据电机转子之间相对位移角的变化来判别是否同步的,所以又称为功角稳定问题。2021/9/21115-2 功角的概念 图15-1所示,一个单机-无穷大容量母线的简单系统,受端电压V的幅值和频率均不变。2021/9/212v由图15-2的相量图容易推得发电机输出功率为v系统总电抗 Xd=Xd+XT1+XL/2+XT22021/9/213
2、当Eq 和V恒定时,传输功率 Pe是角度的正弦函数,因传输功率的大小与密切相关,所以称为“功角”,功和角的关系Pe=f()称为“功角特性”。图15-3就是简单系统的功角特性。2021/9/2142021/9/215功角在电力系统稳定研究中占有特殊地位,它除了表示发电机电势和无穷大系统之间的相位差外(时间概念),更重要的是它还表明了各发电机转子之间的相对位置。(空间概念)如图5-14所示。2021/9/2162021/9/217稳定研究方法:1.静态稳定分析:自动控制理论的方法 微分方程线性化(小干扰法)研究线性微分方程特征根(频域法)2.暂态稳定分析:非线性微分方程数值解法(时域法)大干扰下不
3、适合线性化2021/9/21815-3 静态稳定的初步概念电力系统静态稳定性:系统在运行中受到微小扰动后,独立地恢复原来的运行状态的能力简单电力系统静态稳定的判据:2021/9/2192021/9/21102021/9/211115-4 暂态稳定的初步概念 电力系统暂态稳定性:电力系统在正常运行时,受到大的扰动后,能从原来的运行状态不失同步地过渡到新的运行状态,并在新状态下稳定运行。简单电力系统的暂稳判据:等面积定则2021/9/2112大扰动现象 切除一回输电线路,如图15-7所示。2021/9/2113切除前的正常运行时 系统总电抗 XdI=Xd+XT1+XL/2+XT2 切除一回线路后
4、系统总电抗 XdII=Xd+XT1+XL+XT22021/9/21142021/9/21152021/9/21162021/9/211715-5 负荷稳定的概念 负荷稳定性:负荷在正常运行中受到扰动后能保持某一恒定转差s继续运行的能力。负荷稳定性是电力系统稳定性的一个重要方面。2021/9/2118异步电动机的电磁转矩为为异步电动机定、转子漏抗之和。异步电动机的转矩、转差特性如图15-10 所示。2021/9/21192021/9/2120负荷稳定判据或2021/9/212115-6 电压稳定性的概念 负荷节点的电压稳定。如图10-14(P24)所示单机简单电力系统不存在功角稳定问题,但却存在
5、电压稳定问题。2021/9/2122假设:输电线路总阻抗为负荷等值阻抗为据电压相量图,由余弦定理可得2021/9/2123将 代入可得2021/9/2124当电源电势一定。输电系统阻抗和负荷功率因数一定时,受端电压和功率为负荷阻抗幅值或输电系统阻抗与负荷阻抗比值的函数。分析:受端功率P达到最大值,为2021/9/2125当 由零变化到无穷大时,受端电压将由E单调下降到零;当 时,受端功率达到极限,相对应的电压为临界电压,其值为2021/9/2126受端电压和功率随负荷阻抗变化的曲线2021/9/2127功率极限与负荷功率因数的关系分析:2021/9/2128可见,越小(即 越大),功率极限越小
6、,相应的临界电压越低;当负荷为超前功率因数,即 时,在功率因数角变化的一定范围内,功率极限将会随着功率因数的减小而增大,相应的临界电压也会升高。当 时,功率极限有最大值,为2021/9/2129这种情况下输电系统总阻抗与负荷等值阻抗的关系如下:供电点的输出功率为:送达负荷点的功率仅为供电点功率的一半,输电效率为50%。2021/9/2130负荷节点的电压为:2021/9/2131分析电压稳定时,假定条件是:系统频率保持不变;发电机电势不变;阻抗ZS不变。唯一的变量是负荷等值阻抗ZLD。由此可得在给定功率因数下的P-|zs/zLD|曲线和相应的V-|zs/zLD|曲线如图10-15所示。2021
7、/9/21322021/9/2133电网固有功率传输特性:分析图10-15可知:当|zs/zLD|1时,若zLD,负荷所需P),但电网能供给的P反而减少。功率失衡加剧,负荷zLD进一步自动减小(如电动机s增大),电压随之迅速下降,如此恶性循环导致“电压崩溃”。2021/9/2134电网固有电压特性:当zLD时,负荷节点电压呈单调下降趋势。当系统运行在P-|zs/zLD|曲线的上升段时,负荷有功功率的暂时供需失衡,依靠网络和负荷的固有特性总可以恢复平衡,系统稳定,只是电压有所下降;当系统运行在P-|zs/zLD|曲线的下降段时,负荷因需求功率的增加而减小阻抗,电网送达的功率反而减少,导致功率不平
8、衡加剧。分析:2021/9/2135 根据负荷特性,此时负荷阻抗将继续减少,负荷节点电压随之迅速下降,从而会引发“电压崩溃”。可见,电压平衡是负荷维持功率平衡而调节阻抗的特性与网络的功率传输特性相互作用的结果。说明:负荷功率因数(滞后)不同时,P-|zs/zLD|曲线和V-|zs/zLD|曲线的形状不变;功率因数变小时,对应于相同|zs/zLD|值的功率P和电压V均要减小;2021/9/2136说明:负荷失稳与电压失稳的关系。(P161例析)电压失稳是负荷失稳的一种外在表现。电压稳定性判据(分析如下)。2021/9/2137曲线的右分支相当于P-|zs/zLD|曲线的上升段,负荷节点电压的下降
9、可以换取网络送达功率的增加,系统运行具有电压稳定;曲线的左分支相当于P-|zs/zLD|曲线的下降段,电压的下降将导致送达功率的减少,系统运行不具有电压稳定;2021/9/2138负荷节点静态电压稳定判据2021/9/213915-7 发电机转子运动方程一、转子运动方程 旋转物体(发电机转子)的牛顿运动方程:2021/9/2140J转动惯量(kgms2)A角加速度(rad/s2)机械角速度(rad/s)从某一固定参考轴算起的空间角位移(rad)M=MT-Me净加速转矩(kgm)由于还具有空间位置的意义,故可通过它将电力系统中的机械运动和电磁运动联系起来。2021/9/2141如发电机的极对数为
10、p,则电气角、电气角速度、加速度与实际空间各对应量的关系 =p =p =pA参考轴有两种:静止轴=0(固定位置),同步旋转轴=N(固定转速,常用)记发电机i的电角度、角加速度分别为:相对于静止轴 i i 相对于同步轴 i i2021/9/21422021/9/2143于是有:表明角加速度与参考轴的选择无关。2021/9/2144在多机系统中,发电机i、j之间:ij=i-j 称为相对位置角(功角)ij=i-j 称为相对角速度而相对于同步参考轴:i或j称为“绝对”位置角(功角)i或j=i-j 称为“绝对”角速度2021/9/2145二、标幺值表示的转子运动方程 这里主要是为了把转子运动方程转成电气
11、方程形式。将式(15-15)所有项都乘极对数p,计及式(15-6)、(15-9)可得选转矩基准值MB=SB/N,上式两边除以MB得2021/9/2146定义 ,则 这就是转子运动方程的电气标幺值形式。量纲:TJ(s);(弧度);N(2fN);等号右边各量为标幺值,无量纲。2021/9/2147转子运动方程的另外几种形式时间的标幺值:定义时间的基准值为:则时间的标幺值为:故转子运动方程可改写为:2021/9/2148转子运动方程的状态方程形式2021/9/2149用转差率表示的转子运动方程因为所以故有:2021/9/2150三、惯性时间常数的意义 定义 为发电机额定转矩,并设MB=MN(取本台机
12、的额定值为基准值),则 物理意义:设原动机输入额定转矩MT*=1,没有带负荷Me*=0,故Ma*=1;将上式两边对t积分,相应的*从0到1,可得2021/9/2151TJN=原动机以额定且恒定的转矩将转子从静止拖动至额定转速所需的时间。查手册计算公式:多机系统分析多机系统分析:将第i台机在SNi 下的值TJNi归算到系统统一的基准值SB有2021/9/2152一个发电厂的n台机组合并成一台等值机时,其等值惯性时间常数为 2021/9/2153这样,多机系统中第i台发电机的转子运动方程为(略去表示标幺值的*号):这个方程组的解i就可以用于描述扰动后发电机之间的相对运动(i-j),据此可直接判断系统稳定性。2021/9/2154方程从形式上看是简单的二阶常微分方程,但右边的不平衡转矩却是很复杂的函数:MTi(或PTi)主要取决于本台机组的原动机及其调速系统的特性;Mei(或Pei)除了与自身的电磁特性、励磁特性有关外,还与其它机组、系统结构、系统负荷等许多因数有关。前面所学的“元件功率特性”、“简单供电系统功率特性”、“潮流计算”等知识都是在系统稳定研究中确定Pei的必要知识。下面专门讨论电磁功率Pei。2021/9/2155