《2022年高中数学同角三角函数的基本关系习题新人教版必修.docx》由会员分享,可在线阅读,更多相关《2022年高中数学同角三角函数的基本关系习题新人教版必修.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教案1.2.2同角三角函数的基本关系可编辑资料 - - - 欢迎下载精品_精品资料_考查学问点及角度难易度及题号基础中档稍难可编辑资料 - - - 欢迎下载精品_精品资料_求值问题2、3、48、10化简证明问题1、5、67、9综合问题1112221化简 1 tan cos 等于 A 1B 0C 1D 22sin2221可编辑资料 - - - 欢迎下载精品_精品资料_解析:原式cos 2 cos cos sin 1.可编辑资料 - - - 欢迎下载精品_精品资料_答案: C2sin cos2如
2、tan 2,就 sin 2cos 的值为 3A 0B. 4C 1D.54可编辑资料 - - - 欢迎下载精品_精品资料_2sin cos 解析: sin 2cos2tan 13 tan 2 .可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_4答案: B43已知 是第三象限角,且sin 4cos5 ,就9sin cos 可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_A23B.2 3可编辑资料 - - - 欢迎下载精品_精品资料_11C. 3D 3222解析: 是第三象限角, sincos 0. 又
3、sin 4 cos 4 sin 2 cos 2 2可编辑资料 - - - 欢迎下载精品_精品资料_22sin cos 1 2sin cos52 , sin9 cos22 9. sin cos 2.3可编辑资料 - - - 欢迎下载精品_精品资料_答案: B4已知 tan3, 为第三象限角,就sin 11A. 2B 2可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 1 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - -
4、 - -名师精编优秀教案33C. 2D 2sin2解析: tan cos3,可编辑资料 - - - 欢迎下载精品_精品资料_ cos 323 sin . 又 sin cos 1,可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_ sin 332 . 又 为第三象限角,sin 2 .可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_答案: D 5化简11sintan 1 cos 的结果是 可编辑资料 - - - 欢迎下载精品_精品资料_1cos 可编辑资料 - - - 欢迎下载精品_精品资料_解析:原式s
5、in sin 1 cos可编辑资料 - - - 欢迎下载精品_精品资料_2 cos cos 1 cossinsin2sin sin sin.答案: sin2222226已知 tan 2tan 1,求证: sin 2sin 1.证明:由于tan 2tan 1,所以 tan 2 12tan 2 2.可编辑资料 - - - 欢迎下载精品_精品资料_2sin所以 cos 2 12sin22 1 .cos可编辑资料 - - - 欢迎下载精品_精品资料_12所以 cos 2 cos2 .2222所以 1 sin 21 sin ,即 sin 2sin 1.441cos sin 可编辑资料 - - - 欢迎下
6、载精品_精品资料_7. 化简:66.1 cos sin可编辑资料 - - - 欢迎下载精品_精品资料_解:方法一:原式22244 sin cos sin2 sin 2 3 cos6 sin 6 2cos 2 sin 2 2 3cos2 sin 2 2 sin 2 3.可编辑资料 - - - 欢迎下载精品_精品资料_1方法二:原式144 sin66 sin可编辑资料 - - - 欢迎下载精品_精品资料_12 sin 2 2 2sin 2 cos 2 12 sin 2 4 cos2 sin 2 sin 4 可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - -
7、- - - -第 2 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教案可编辑资料 - - - 欢迎下载精品_精品资料_1 12cos22sin可编辑资料 - - - 欢迎下载精品_精品资料_ 12 sin 2 2 3cos2 sin 2 2cos2 sin 2 23 3cos2 sin 2 .18如 sin cos 2,就 tan tan 的值为 A 1B 2C 1D 21sincos 1解析: tan tan cos sin sin cos.1又 s
8、in cos 2, sin cos 2.可编辑资料 - - - 欢迎下载精品_精品资料_1 tan tan 2.可编辑资料 - - - 欢迎下载精品_精品资料_答案: B可编辑资料 - - - 欢迎下载精品_精品资料_9已知 是第三象限角,化简1 sin1 sin1 sin得1 sin可编辑资料 - - - 欢迎下载精品_精品资料_A tanB tanC 2tanD 2tan2 sin可编辑资料 - - - 欢迎下载精品_精品资料_解析:原式 sin sin2 sin可编辑资料 - - - 欢迎下载精品_精品资料_ sinsin22 sin sin可编辑资料 - - - 欢迎下载精品_精品资料
9、_22coscos可编辑资料 - - - 欢迎下载精品_精品资料_1 sin1 sin |cos | |cos | .由于 是第三象限角,所以cos 0.可编辑资料 - - - 欢迎下载精品_精品资料_所以原式1 sin cos 1 sin cos 2tan .可编辑资料 - - - 欢迎下载精品_精品资料_答案: C8sin cos10已知 sin 3cos 3,就 sin cos .可编辑资料 - - - 欢迎下载精品_精品资料_解析:由8sin cossin 3cos 3,得 tan 2,可编辑资料 - - - 欢迎下载精品_精品资料_sincossin2 sin cos 2 cos可编
10、辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 3 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教案可编辑资料 - - - 欢迎下载精品_精品资料_tan1 tan 2 22152 .可编辑资料 - - - 欢迎下载精品_精品资料_2答案: 533tancos可编辑资料 - - - 欢迎下载精品_精品资料_11如 cos 5且 tan 0,求的值1sin可编辑资料 - - - 欢迎下载精品_精品
11、资料_可编辑资料 - - - 欢迎下载精品_精品资料_3tan cossin3cos cos可编辑资料 - - - 欢迎下载精品_精品资料_解:1 sin1 sin可编辑资料 - - - 欢迎下载精品_精品资料_2sincossin sin2可编辑资料 - - - 欢迎下载精品_精品资料_1sin1 sinsin sin sin1 sin sin 1 sin 可编辑资料 - - - 欢迎下载精品_精品资料_sin由 tan cos 0, cos 22又 sin cos 1,3 0, sin 0. 5可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_
12、2 sin 1 cos4 5.444可编辑资料 - - - 欢迎下载精品_精品资料_原式 sin1 sin 5 1 5 25.可编辑资料 - - - 欢迎下载精品_精品资料_12已知2sin 2 2sin cos 1tan k 0 2. 试用 k 表示 sin cos 的值可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_22sin解: 2sin cos1tan可编辑资料 - - - 欢迎下载精品_精品资料_2sin cos sin1 cos2sin cos cossin cos 2sin cos k.可编辑资料 - - - 欢迎下载精品_精品资料
13、_当 0 4 时, sin cos,可编辑资料 - - - 欢迎下载精品_精品资料_此时 sin cos 0,2 sin cos cos1 2sin cos1 k.可编辑资料 - - - 欢迎下载精品_精品资料_当 4 2 时, sin cos ,可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 4 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品_精品资料_资料word 精心总结归纳 - - - - - - - - - - - -名师精编优秀教
14、案此时 sin cos 0,2 sin cos cos1 2sincos 1 k.本节内容是由三角函数定义推导出的两个基本公式,即同角三角函数的基本关系式,是高考常考内容,常与其他学问相结合考查1已知角 的某一种三角函数值,求角 的其余三角函数值时,要留意公式的合理挑选,一般是先选用平方关系,再用商数关系2在进行三角函数式的求值时,细心观看题目的特点,敏捷、恰当的选用公式,统一角、统一函数、 降低次数是三角函数关系式变形的动身点利用同角三角函数的基本关系式主要是统一函数,要把握“切化弦”和“弦化切”的方法3学会利用方程思想解三角题,对于sin cos , sincos,sin cos, 这三个式子,已知其中一个式子的值,其余两式的值可以求出可编辑资料 - - - 欢迎下载精品_精品资料_学习资料 名师精选 - - - - - - - - - -第 5 页,共 5 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载