《高二数学下册《一次函数》知识点.docx》由会员分享,可在线阅读,更多相关《高二数学下册《一次函数》知识点.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学下册一次函数知识点高一数学学问点:一次函数 高一数学学问点:一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特殊地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的改变值与对应的x的改变值成正比例,比值为k 即:y=kx+b(k为随意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。
2、(通常找函数图像与x轴和y轴的交点) 2性质:(1)在一次函数上的随意一点P(x,y),都满意等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线必通过三、四象限。 特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限 四、确
3、定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的随意一点P(x,y),都满意等式y=kx+b。所以可以列出2个方程:y1=kx1+b和y2=kx2+b (3)解这个二元一次方程,得到k,b的值。 (4)最终得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t肯定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 六、常用公式:(不全,希望有人补充) 1.求函数图像
4、的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求随意线段的长:(x1-x2)2+(y1-y2)2(注:根号下(x1-x2)与(y1-y2)的平方和) 高一数学一次函数的图像及性质复习学问点 高一数学一次函数的图像及性质复习学问点 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的随意一点P(x,y),都满意等式:y=kx+b。(
5、2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线必通过三、四象限。 特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。 高一一次函数和二次函数学问点总结人教B版 高一一次函数和二次函数学问点总结人教B版一次函数一、定义与定义式:自变量x和
6、因变量y有如下关系:y=kx+b则此时称y是x的一次函数。特殊地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k0)二、一次函数的性质:1.y的改变值与对应的x的改变值成正比例,比值为k即:y=kx+b(k为随意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的随意一点P(x,y),都满意等式:y=kx+b。(2)一次函数与y
7、轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数的表达式(也叫解析式)为y=kx
8、+b。(2)因为在一次函数上的随意一点P(x,y),都满意等式y=kx+b。所以可以列出2个方程:y1=kx1+b和y2=kx2+b(3)解这个二元一次方程,得到k,b的值。(4)最终得到一次函数的表达式。五、一次函数在生活中的应用:1.当时间t肯定,距离s是速度v的一次函数。s=vt。2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求随意线段的长:(x1-x2)2
9、+(y1-y2)2(注:根号下(x1-x2)与(y1-y2)的平方和)为大家带来了人教B版高一数学必修一其次单元一次函数和二次函数学问点,希望大家能够熟记这些数学学问点,更多的中学数学学问点请查阅。 高一数学一次函数的公式和运用学问点梳理 高一数学一次函数的公式和运用学问点梳理 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特殊地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的改变值与对应的x的改变值成正比例,比值为k 即:y=kx+b(k为随意不为零的实数b取任何实数) 2.当x=0时,b为函数
10、在y轴上的截距。 三、一次函数的图像及性质: 1作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2性质:(1)在一次函数上的随意一点P(x,y),都满意等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=
11、0时,直线通过原点 当b0时,直线必通过三、四象限。 特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b. (2)因为在一次函数上的随意一点P(x,y),都满意等式y=kx+b.所以可以列出2个方程:y1=kx1+b和y2=kx2+b (3)解这个二元一次方程,得到k,b的值。 (4)最终得到一次函数的表达式。 五、一次函数在生活中的应用: 1
12、.当时间t肯定,距离s是速度v的一次函数。s=vt. 2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S.g=S-ft. 六、常用公式:(不全,希望有人补充) 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求随意线段的长:(x1-x2)2+(y1-y2)2(注:根号下(x1-x2)与(y1-y2)的平方和) 第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页