2000-全国高中数学联赛分类汇编(集合函数).doc

上传人:e****s 文档编号:62399969 上传时间:2022-11-22 格式:DOC 页数:13 大小:1.24MB
返回 下载 相关 举报
2000-全国高中数学联赛分类汇编(集合函数).doc_第1页
第1页 / 共13页
2000-全国高中数学联赛分类汇编(集合函数).doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《2000-全国高中数学联赛分类汇编(集合函数).doc》由会员分享,可在线阅读,更多相关《2000-全国高中数学联赛分类汇编(集合函数).doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 2000-2012全国高中数学联赛分类汇编(集合函数)1、(2000一试1)设全集是实数,若A=x|0,B=x|=,则是 ( )(A) 2 (B) -1 (C) x|x2 (D) 【答案】D【解析】由得x=2,故A=2;由得,故B=-1,2.所以=.2、(2001一试1)已知a为给定的实数,那么集合M=x|x2-3x-a2+2=0,xR的子集的个数为( ) (A)1 (B)2 (C)4 (D)不确定【答案】C【解析】M表示方程320在实数范围内的解集由于140,所以含有2个元素故集合有24个子集,选3、(2002一试1)函数f(x)=的单调递增区间是( )(A) (-,-1) (B) (-,

2、1) (C) (1,+) (D) (3,+)【答案】A【解析】由x2-2x-30x3,令f(x)=, u= x2-2x-3,故选A4、(2002一试3) 函数f(x)=( )(A) 是偶函数但不是奇函数 (B) 是奇函数但不是偶函数(C) 既是奇函数又是偶函数 (D) 既不是奇函数又不是偶函数【答案】A【解析】由题得函数的定义域为,满足不满足,所以函数是偶函数,但是不是奇函数。5、(2002一试5)已知两个实数集合A=a1, a2, , a100与B=b1, b2, , b50,若从A到B的映射f使得B中的每一个元素都有原象,且f(a1)f(a2)f(a100),则这样的映射共有( )(A)

3、(B) (C) (D) 【答案】D【解析】不妨设b1b20,所以只须求x-y的最小值。令x-y=u代入x2-4y2=4中有3y2-2uy+(4-u2)=0 yR 0 当时,u=,故|x|-|y|的最小值是14、(2003一试9)已知A=x|x24x+30,xR, B=x|21x+a0,x22(a+7)x+50,xR若AB,则实数a的取值范围是 【答案】4a1【解析】A=(1,3);又,a21x(1,),当x(1,3)时,a 7(7,4) 4a115、(2003一试10) 已知a,b,c,d均为正整数,且logab=,logcd=,若ac=9,则bd= 【答案】93【解析】a3=b2,c5=d4

4、,设a=x2,b=x3;c=y4,d=y5,x2y4=9(x+y2)(xy2)=9 x+y2=9,xy2=1,x=5,y2=4bd=5325=12532=9316、(2004一试8)设函数f:RR,满足f(0)=1,且对任意x,yR,都有f(xy+1)=f(x)f(y)f(y)x+2,则f(x)= 。【答案】x+1【解析】令x=y=0,得,f(1)=110+2,f(1)=2令y=1,得f(x+1)=2f(x)2x+2,即f(x+1)=2f(x)x又,f(yx+1)=f(y)f(x)f(x)y+2,令y=1代入,得f(x+1)=2f(x)f(x)1+2,即f(x+1)=f(x)+1比较、得,f(

5、x)=x+117、(2005一试8)已知是定义在上的减函数,若成立,则的取值范围是 【答案】【解析】在上定义,又仅当或时,在上是减函数,结合()知或18、(2008一试7) 设,其中为实数,若,则 .【答案】5【解析】由题意知,由得,因此,19、(2008一试11)设是定义在上的函数,若 ,且对任意,满足 ,则= .【答案】【解析】方法一:由题设条件知 ,因此有,故 方法二: 令,则 ,即,故,得是周期为2的周期函数,所以20、(2009一试1)若函数且,则 【答案】【解析】,故21、(2009一试6)若方程仅有一个实根,那么的取值范围是 【答案】或【解析】当且仅当对由求根公式得, 或()当时

6、,由得,所以,同为负根又由知,所以原方程有一个解()当时,原方程有一个解()当时,由得,所以,同为正根,且,不合题意,舍去综上可得或为所求22、(2010一试1)函数的值域是 .【答案】 【解析】易知的定义域是,且在上是增函数,从而可知的值域为.23、(2010一试5)函数 在区间上的最大值为8,则它在这个区间上的最小值是 .【答案】【解析】令则原函数化为,在上是递增的.当时,,,所以 ;当时,所以 .综上在上的最小值为.24、(2011一试1)设集合,若中所有三元子集的三个元素之和组成的集合为,则集合 【答案】.【解析】显然,在的所有三元子集中,每个元素均出现了3次,所以,故,于是集合的四个

7、元素分别为5(1)6,532,550,583,因此,集合25、(2011一试2)函数的值域为 【答案】【解析】设,且,则设,则,且,所以 26、(2012一试6)设是定义在上的奇函数,且当时,若对任意的,不等式恒成立,则实数的取值范围是 【答案】【解析】由题设知,则因此,原不等式等价于因为在上是增函数,所以即又所以当时,取得最大值因此,解得故的取值范围是27、(2000一试14)若函数在区间a,b上的最小值为2a,最大值为2b,求a,b.【解析】化三种情况讨论区间a,b.(1) 若0ab, 则f (x)在 a, b 上单调递减,故f(a) =2b, f(b)=2a于是有,解之得 a, b =

8、1, 3 , (2)若a 0 b, f (x)在 a, b 上单调递增,在0,b 上单调递减,,因此f (x)在x=0处取最大值2b在x=a或x=b处取最小值2a.故2b=,b=.由于a0, 又f(b)=-() + =故 f(x)在x=a处取最小值2a,即 2a=+,解得a=-2-;于是得 a,b=-2-,.(2) 当a1),使得存在tR,只要x1,m,就有f(x+t)x【解析】f(x-4)=f(2-x) 函数的图象关于x= -1对称 b=2a由知当x= -1时,y=0,即a-b+c=0由得 f(1)1,由得 f(1)1f(1)=1,即工+了+以=1,又a-b+c=0a= b= c=f(x)=

9、 假设存在tR,只要x1,m,就有f(x+t)x取x=1时,有f(t+1)1(t+1)2+(t+1)+1-4t0对固定的t-4,0,取x=m,有f(t +m)m(t+m)2+(t+m)+mm2-2(1-t)m+(t2+2t+1)0m m=9 当t= -4时,对任意的x1,9,恒有f(x-4)-x=(x2-10x+9)=(x-1)(x-9)0m的最大值为9。 另解:f(x-4)=f(2-x) 函数的图象关于x= -1对称 b=2a由知当x= -1时,y=0,即a-b+c=0由得 f(1)1,由得 f(1)1f(1)=1,即工+了+以=1,又a-b+c=0a= b= c=f(x)=(x+1)2 由

10、f(x+t)=(x+t+1)2x 在x1,m上恒成立 4f(x+t)-x=x2+2(t-1)x+(t+1)20当x1,m时,恒成立 令 x=1有t2+4t0-4t0令x=m有t2+2(m+1)t+(m-1)20当t-4,0时,恒有解 令t= -4得,m2-10m+901m9 即当t= -4时,任取x1,9恒有f(x-4)-x=(x2-10x+9)=(x-1)(x-9)0 mmin=9 29、(2002一试15)实数a,b,c和正数l使得f(x)=x3+ax2+bx+c有三个实根x1,x2,x3,且满足 x2-x1=l, x3(x1+x2) ,求【解析】 f(x)=f(x)-f(x3)=(x-x

11、3)x2+(a+x3)x+x32+ax3+b x1,x2是方程x2+(a+x3)x+x32+ax3+b的两个根 x2-x1=l (a+x)2-4(x32+ax3+b)=3x32+2ax3+l2+4b-a2=0x3(x1+x2) ()且 4a2-12b-3l20 () f(x)=x3+ax2+bx+c= f(x3)=0 () 由()得 记p=,由() 和()可知p且 令 y=,则y0且 = 0 取a=2,b=2,c=0,l=2,则f(x)=x3+ax2+bx+c有根,0 显然假设条件成立,且 综上所述的最大值是 30、(2005二试2)设正数a、b、c、x、y、z满足求函数的最小值.【解析】由条

12、件得,即,同理,得a、b、c、x、y、z为正数,据以上三式知,故以a、b、c为边长,可构成一个锐角三角形ABC,问题转化为:在锐角ABC中,求函数、)=的最小值.令则且同理,+(取等号当且仅当,此时,31、(2006一试15)设 . 记,. 证明:.【解析】()如果,则,。 ()如果,由题意 ,,. 则 当 时,(). 事实上,当时,, 设时成立(为某整数),则对, . 当 时,().事实上,当时,, 设时成立(为某整数),则对,有.注意到 当时,总有,即 . 从而有.由归纳法,推出 。 (3)当时,记,则对于任意,且。对于任意,, 则。 所以,。当时,即。因此。综合()()(),我们有。 3

13、2、(2007一试15)设函数f(x)对所有的实数x都满足f(x+2)=f(x),求证:存在4个函数fi(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+)=fi(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。【解析】证明:记,则f(x)=g(x)+h(x),且g(x)是偶函数,h(x)是奇函数,对任意的xR,g(x+2)=g(x),h(x+2)=h(x)。令,其中k为任意整数。容易验证fi(x),i=1,2,3,4是偶函数,且对任意的xR,fi(x+)=fi(x)

14、,i=1,2,3,4。下证对任意的xR,有f1(x)+f2(x)cosx=g(x)。当时,显然成立;当时,因为,而,故对任意的xR,f1(x)+f2(x)cosx=g(x)。下证对任意的xR,有f3(x)sinx+f4(x)sin2x=h(x)。当时,显然成立;当x=k时,h(x)=h(k)=h(k2k)=h(k)=h(k),所以h(x)=h(k)=0,而此时f3(x)sinx+f4(x)sin2x=0,故h(x)=f3(x)sinx+f4(x)sin2x;当时,故,又f4(x)sin2x=0,从而有h(x)=f3(x)sinx+f4(x)sin2x。于是,对任意的xR,有f3(x)sinx+

15、f4(x)sin2x=h(x)。综上所述,结论得证。33、(2008二试2)设是周期函数,和1是的周期且证明:(1)若为有理数,则存在素数,使是的周期;(2)若为无理数,则存在各项均为无理数的数列满足 ,且每个都是的周期【解析】(1)若是有理数,则存在正整数使得且,从而存在整数,使得 于是是的周期又因,从而设是的素因子,则,从而 是的周期 (2)若是无理数,令 ,则,且是无理数,令 , , 由数学归纳法易知均为无理数且又,故,即因此是递减数列最后证:每个是的周期事实上,因1和是的周期,故亦是的周期假设是的周期,则也是的周期由数学归纳法,已证得均是的周期 34、(2011一试9)设函数,实数满足,求的值【解析】因为,所以,所以或,又因为,所以,所以 又由有意义知,从而,于是所以 从而 又,所以,故 解得或(舍去)把代入解得 所以 ,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理手册

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁