《【初二数学】整式的乘除与因式分解复习(共12页).doc》由会员分享,可在线阅读,更多相关《【初二数学】整式的乘除与因式分解复习(共12页).doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、整式的乘除与因式分解一、学习目标:1.掌握与整式有关的概念;2.掌握同底数幂、幂的乘法法则,同底数幂的除法法则,积的乘方法则;3.掌握单项式、多项式的相关计算;4.掌握乘法公式:平方差公式,完全平方公式。5.掌握因式分解的常用方法。二、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。如:的 系数为,次数为4,单独的一个非零数的次数是0。2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:,项有、1,二次项为、,一次项为,常数项
2、为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。3、整式:单项式和多项式统称整式。注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。4、多项式按字母的升(降)幂排列:如:按的升幂排列:按的降幂排列:按的升幂排列:按的降幂排列:5、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:6、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。如:幂的乘方法则可以逆用:即如:7、积的乘方法则:(是正整数)积的乘方,等于各因数乘方的积。如:(=8、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不变,指
3、数相减。如:9、零指数和负指数;,即任何不等于零的数的零次方等于1。(是正整数),即一个不等于零的数的次方等于这个数的次方的倒数。如:10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:积的系数等于各因式系数的积,先确定符号,再计算绝对值。相同字母相乘,运用同底数幂的乘法法则。只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式乘法法则对于三个以上的单项式相乘同样适用。单项式乘以单项式,结果仍是一个单项式。如:11、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即(都
4、是单项式)注意:积是一个多项式,其项数与多项式的项数相同。运算时要注意积的符号,多项式的每一项都包括它前面的符号。在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。如:12、多项式与多项式相乘的法则;多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。如:13、平方差公式:注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。如: 14、完全平方公式:公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘
5、积的2倍。注意: 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。15、三项式的完全平方公式:16、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式如:17、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:18、因式分解:常用方法:提公因式法、公式法、配方法、十字相乘法三、知识点分析:1.同底数幂、幂的运算:aman=am+n(m,n都是
6、正整数).(am)n=amn(m,n都是正整数).例题,则a= ;若,则n= .例题,求的值。例题3.计算 练习1.若,则= . 4x=8y-1,且9y=27x-1,则x-y等于 。(ab)n=anbn(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.例题1. 计算:平方差公式:完全平方和公式:完全平方差公式:例题1. 利用平方差公式计算:2009200720082例题2.利用平方差公式计算:例题3.利用平方差公式计算:例题4.(a2b3cd)(a2b3cd)变式练习1广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的
7、长方形草坪的面积是多少?2.(3+1)(32+1)(34+1)(32008+1)3. 已知 求的值4、已知 ,求xy的值5.如果ab2a 4b 50 ,求a、b的值6.试说明(1) 两个连续整数的平方差必是奇数 (2) 若a为整数,则能被6整除7.一个正方形的边长增加4cm ,面积就增加56cm ,求原来正方形的边长 4.单项式、多项式的乘除运算(1)(ab)(2ab)(3a2b2);(2)(ab)(ab)2(a22abb2)2ab(3)已知x2x10,求x32x23的值5. 因式分解: 1.提公因式法:式子中有公因式时,先提公因式。例1把分解因式分析:把多项式的四项按前两项与后两项分成两组,
8、并使两组的项按的降幂排列,然后从两组分别提出公因式与,这时另一个因式正好都是,这样可以继续提取公因式解:说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法本题也可以将一、四项为一组,二、三项为一组,同学不妨一试例2把分解因式分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式解:说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律由此可以看出运算律在因式分解中所起的作用2. 公式法:根据平方差和完全平方公式例题1 分解因式3.配方法:例1分解因式解:说明:这种设法配成
9、有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解当然,本题还有其它方法,请大家试验4.十字相乘法:(1)型的因式分解这类式子在许多问题中经常出现,其特点是:(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和因此,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式例1把下列各式因式分解:(1) (2) 解:(1) (2) 说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同例2把下列各式因式分解:(1) (2) 解:(1) (2) 说明:此例可以看出,常数项为负数时,应分解
10、为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同例3把下列各式因式分解:(1) (2) 分析:(1) 把看成的二次三项式,这时常数项是,一次项系数是,把分解成与的积,而,正好是一次项系数 (2) 由换元思想,只要把整体看作一个字母,可不必写出,只当作分解二次三项式解:(1) (2) (2)一般二次三项式型的因式分解大家知道,反过来,就得到:我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法必须注意,分
11、解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解例4把下列各式因式分解:(1) (2) 解:(1) (2) 说明:用十字相乘法分解二次三项式很重要当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号练习1、 已知,求 的值。2、 若x、y互为相反数,且,求x、y的值提高练习1(2x24x10xy)()x1y2若xy8,x2y24,则x2y2_3代数式4x23mx9是完全平方式则m_ 4(a1)(a1)(a
12、21)等于()(A)a41 (B)a41 (C)a42a21 (D)1a45已知ab10,ab24,则a2b2的值是 ()(A)148 (B)76 (C)58 (D)526(2)(3y)2(3y)2;(2)(x22x1)(x22x1); 7(1)(1)(1)(1)(1)的值8已知x2,求x2,x4的值9已知(a1)(b2)a(b3)3,求代数式ab的值10若(x2pxq)(x22x3)展开后不含x2,x3项,求p、q的值整式的乘除与因式分解单元试题一、选择题:(每小题3分,共18分)1、下列运算中,正确的是( )2x3=x6B.(ab)3=a3b3 C.3a+2a=5a2 D.(x)= x52
13、、下列从左边到右边的变形,是因式分解的是( )(A) (B)(C) (D)3、下列各式是完全平方式的是()A、B、C、D、4、下列多项式中能用平方差公式分解因式的是( )(A) (B) (C) (D)5、如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A. 3B. 3C. 0D. 16、一个正方形的边长增加了,面积相应增加了,则这个正方形的边长为( ) A、6cm B、5cm C、8cm D、7cm二、填空题:(每小题3分,共18分)7、在实数范围内分解因式8、_9、若3x=,3y=,则3xy等于 10、绕地球运动的是10米/秒,则卫星绕地球运行8105秒走过的路程是 三、计算
14、题:(每小题4分,共12分)11、 12、13、(x2y)(x2y)(2yx)2x(2xy)2x四、因式分解:(每小题4分,共16分)14、 15、2x2y8xy8y16、a2(xy)4b2(xy) 五、解方程或不等式:(每小题5分,共10分) 17、六、解答题:(第2224小题各6分,第25小题8分,共26分)18、若,求的值。23、自己作图:大正方形的边长为a, 小正方形的边长为b,利用此图证明平方差公式。24、如图,某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积25、察下列各式(x-1)(x+1)
15、=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1(1)根据规律可得(x-1)(xn-1+x +1)= (其中n为正整数)(2)计算:(3)计算:1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 1
16、2两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对
17、边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60
18、34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图
19、形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理 n边形的内角的和等于(n-2)180 51推论 任意多边的外角和等于360 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角