《太阳能发电站光伏发电项目施工施工综合说明.doc》由会员分享,可在线阅读,更多相关《太阳能发电站光伏发电项目施工施工综合说明.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、太阳能发电站光伏发电项目施工施工综合说明1.1. 编制依据光伏发电是节约能源利国利民的新型产业,本着从科学的角度展示他的价值作为主导思想为依据。根据国家现行的法规和规范编制:1) IEC61215 晶体硅光伏组件设计鉴定和定型2) IEC6173O.l 光伏组件的安全性构造要求3) IEC6173O.2 光伏组件的安全性测试要求4) GB/T18479-2001地面用光伏(PV)发电系统 概述和导则5) SJ/T11127-1997光伏(PV)发电系统过电压保护导则6) GB/T 19939-2005光伏系统并网技术要求7) EN 61701-1999 光伏组件盐雾腐蚀试验8) EN 6182
2、9-1998 晶体硅光伏方阵I-V特性现场测量9) EN 61721-1999 光伏组件对意外碰撞的承受能力(抗撞击试验)10) EN 61345-1998 光伏组件紫外试验11) GB 6495.1-1996 光伏器件 第1部分: 光伏电流电压特性的测量12) GB 6495.2-1996 光伏器件 第2部分: 标准太阳电池的要求13) GB 6495.3-1996 光伏器件 第3部分: 地面用光伏器件的测量原理及标准光谱辐照度数据14) GB 6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法15) GB 6495.5-1997 光伏器件 第5部分: 用开路电压法
3、确定光伏(PV)器件的等效电池温度(ECT)16) GB 6495.7-2006 光伏器件 第7部分:光伏器件测量过程中引起的光谱失配误差的计算17) GB 6495.8-2002 光伏器件 第8部分: 光伏器件光谱响应的测量测量18) GB/T 18210-2000 晶体硅光伏(PV)方阵I-V特性的现场测量19) GB/T 18912-2002 光伏组件盐雾腐蚀试验20) GB/T 19394-2003 光伏(PV)组件紫外试验21) GB 20047.1-2006 光伏(PV)组件安全鉴定 第1部分:结构要求22) GB 20047.2-2006 光伏(PV)组件安全鉴定 第2部分:试验
4、要求23) GB6495-86 地面用太阳能电池电性能测试方法;24) GB6497-1986 地面用太阳能电池标定的一般规定;25) GB/T 14007-1992 陆地用太阳能电池组件总规范;26) GB/T 14009-1992 太阳能电池组件参数测量方法;27) GB/T 9535-1998 地面用晶体硅太阳电池组件设计鉴定和类型;28) GB/T 11009-1989 太阳电池光谱响应测试方法;29) GB/T 11010-1989 光谱标准太阳电池;30) GB/T 11012-1989 太阳电池电性能测试设备检验方法;31) IEEE 1262-1995 太阳电池组件的测试认证规
5、范;32) SJ/T 2196-1982 地面用硅太阳电池电性能测试方法;33) SJ/T 9550.29-1993 地面用晶体硅太阳电池单体 质量分等标准;34) SJ/T 9550.30-1993 地面用晶体硅太阳电池组件 质量分等标准;35) SJ/T 10173-1991 TDA75多晶硅太阳电池;36) SJ/T 10459-1993 太阳电池温度系数测试方法;37) SJ/T 11209-1999 光伏器件 第6部分 标准太阳电池组件的要求;1.2工程概述 上海宝山区科学技术协会是对外宣传的一个窗口,梦之园太阳能发电站是让更多人了解光伏发电的优势。 单晶硅太阳能电池的光电转换效率为
6、15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。一光伏组件1 层压件 2 铝合金: 保护层压件,起一定的密封、支撑作用 3 接线盒: 保护整个发电系统,起到电流中转站的作用,如果组件短路接线盒自动断开短路电池串,防止烧坏整个系统。接线盒中最关键的是二极管的选用,根据组件内电池片的类型不同,对应的二极管也不相同。 4 硅胶: 密封作用,用来密封组件与铝合金边框、组件与接线盒交界处有些公司使用双面胶条、泡棉来替
7、代硅胶,国内普遍使用硅胶,工艺简单,方便,易操作,而且成本很低。二层压件结构1钢化玻璃:其作用为保护发电主体(如电池片),透光其选用是有要求的,透光率必须高(一般91%以上);超白钢化处理 。2EVA:用来粘结固定钢化玻璃和发电主体(如电池片),透明EVA材质的优劣直接影响到组件的寿命,暴露在空气中的EVA易老化发黄,从而影响组件的透光率,从而影响组件的发电质量除了EVA本身的质量外,组件厂家的层压工艺影响也是非常大的,如EVA胶黏度不达标,EVA与钢化玻璃、背板粘接强度不够,都会引起EVA提早老化,影响组件寿命。 3晶体硅太阳电池片,选择有优劣晶体硅太阳能电池片,设备成本相对较低,但消耗及电
8、池片成本很高,但光电转换效率也高。4背板:密封、绝缘、防水(一般都用TPT、TPE等)材质必须耐老化,钢化玻璃,铝合金一般都没问题,关键就在与背板和硅胶是否能达到要求。编辑本段基本要求1、能够提供足够的机械强度,使太阳能电池组件能经受运输、安装和使用过程中发生的冲击、震动等产生的应力,能够经受住冰雹的单击力;2、具有良好的密封性,能够防风、防水、隔绝大气条件下对太阳能电池片的腐蚀;3、具有良好的电绝缘性能;4、抗紫外线能力强;5、工作电压和输出功率按不同的要求设计,可以提供多种接线方式,满足不同的电压、电流和功率输出要求; 5因太阳能电池片串、并联组合引起的效率损失小; 6太阳能电池片连接可靠
9、; 7工作寿命长,要求太阳能电池组件在自然条件下能够使用20年以上; 8在满足前述条件下,封装成本尽可能低。三功率计算光伏发电系统是由太阳电池板、充电控制器、逆变器和蓄电池共同组成;太阳能直流发电系统则不包括逆变器。为了使太阳能发电系统能为负载提供足够的电源,就要根据用电器的功率,合理选择各部件。下面以100W输出功率,每天使用6个小时为例,介绍一下计算方法: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗):若逆变器的转换效率为90%,则当输出功率为100W时,则实际需要输出功率应为100W/90%=111W;若按每天使用5小时,则耗电量为111W*5小时=555Wh。2.计算太阳能电池
10、板:按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为555Wh/6h/70%=130W。其中70%是充电过程中,太阳能电池板的实际使用功率。四光伏组件方阵设计( F; |- s4 ) PL/ X2 u& s8 v4 V 计算太阳电池组件的基本方法是用负载平均每天所需要的能量(安时数)除以一块太阳能电池组件在一天中可以产生的能量(安时数),这样就可以算出系统需要并联的太阳电池组件数,使这些组件并联就可以产生系统负载所需要的电流,将系统的标称电压除以太阳能电池组件的标称电压,就可以得到太阳电池组件需要串联的太阳能电池组件数,使用这些太阳电池组件串联就可
11、以产生系统负载所需要的电压。% v# r- a: F: C! 并联的组件数量每天平均负载/组件每天输出0 w: c% L! A4 ( u 串联组件数量 系统电压/组件电压2 RC. p9 j( W5 C _& w, I5 P- V J; x简易公式:& d, l! * |6 E; V, h; N( ; M: P太阳能电池组功率=负载功率*用电时间/当地日平均峰值日照时数*损耗系数+ A1 4 R! u G; c蓄电池容量=负载功率*用电时间/系统电压*连续阴雨天数*系统安全系数 并联的组件数量 每天平均负载/组件每天输出 串联组件数量 系统电压/组件电压 C本系统按5套光伏电池组。其中,有四块
12、光伏电池每个面积为0.39平方计1.95*4=7.80平方,另1组单独安置在小岛上共有九块组成面积是2.31*9+20.79平方,总计光伏电池面积为28.59平方。系统为光伏离网发电单元要求进行设计,选用2台智能型汇流箱,可以根据逆变器输入的直流电压范围把规格相同的光伏组件串联组成1个光伏组件串列接入汇流箱进行汇流。对于光伏并网发电系统,为了减少光伏组件与逆变器之间连接线,方便维护,提高可靠性,一般需要在光伏组件与逆变器之间增加直流汇流装置。根据逆变器输入的直流电压范围,把一定数量的规格相同的光伏组件串联组成1个光伏组件串列,再将若干个串列接入光伏阵列防雷汇流箱(见图1)进行汇流,通过防雷器与
13、断路器后输出,方便了后级逆变器的接入。通过防雷器与断路器后输出,智能汇流箱可接入16路太阳电池串列每路电流最大可达12A,配有高压防雷器,正、负极都具备防雷功能。能够实时监测16路电流大小,汇流后电压大小,断路器开关状态,防雷器工作状态,通过RS485通讯,可在显示屏上观察。在进行独立光伏系统中,必不可少的一环就是蓄电池,现对蓄电池的容量和蓄电池组的串并联组成构思作设计。 蓄电池容量的基本公式3 b4 L: qz7 T( u C 蓄电池的容量=自给天数*日平均负载/最大放电深度 (通常情况下,如果使用的是深循环型蓄电池,推荐使用80%放电深度(DOD);如果使用的是浅循环蓄电池,推荐选用使用5
14、0%DOD。)1.蓄电池的串并联方法 每个蓄电池都有它的标称电压。为了达到负载工作的标称电压,我们将蓄电池串联起来给负载供电,需要串联的蓄电池的个数等于负载的标称电压除以蓄电池的标称电压。负载标称电压/串联蓄电池数9 / O5 y8 KX. g0 E=1 Q* q! u$ B) N1 n5 2.蓄电池标称电压 我们用一个小型的交流光伏应用系统作为范例。假设该光伏系统交流负载的耗电量为10KWh/天,如果在该光伏系统中,我们选择使用的逆变器的效率为90,输入电压为24V,那么可得所需的直流负载需求为462.96Ah/天。(10000 Wh 0.9 24 V = 462.96 Ah)。我们假设这是
15、一个负载对电源要求并不是很严格的系统,使用者可以比较灵活的根据天气情况调整用电。我们选择5天的自给天数,并使用深循环电池,放电深度为80。那么:蓄电池容量5天462.96Ah/0.82893.51Ah。y q5 m7 p7 G# - 2 y如果选用2V/400Ah的单体蓄电池,那么需要串连的电池数:* l% y4 z) V: N+ 9 l% X% u4 I& h/ b- ( x: U7 R: J% a4 n 串联蓄电池数24V/2V=12(个)) o0 Y0 * R! P4 X9 d/ F需要并联的蓄电池数:) $ e2 * u: S1 L 并联蓄电池数2893.51/4007.23我们取整数
16、为8。所以该系统需要使用2V/400Ah的蓄电池个数为:12串联8并联 = 96(个)。! c- B1 lG& E4 r: w. l( E- & j9 w8 V1 |1 Y3.蓄电池组并联设计 当计算出了所需的蓄电池的容量后,下一步就是要决定选择多少个单体蓄电池加以并联得到所需的蓄电池容量。这样可以有多种选择,例如,如果计算出来的蓄电池容量为500Ah,那么我们可以选择一个500Ah的单体蓄电池,也可以选择两个250Ah的蓄电池并联,还可以选择5个100Ah的蓄电池并联。从理论上讲,这些选择都可以满足要求,但是在实际应用当中,要尽量减少并联数目。也就是说最好是选择大容量的蓄电池以减少所需的并联
17、数目。这样做的目的就是为了尽量减少蓄电池之间的不平衡所造成的影响,因为一些并联的蓄电池在充放电的时候可能会与之并联的蓄电池不平衡。并联的组数越多,发生蓄电池不平衡的可能性就越大。一般来讲,建议并联的数目不要超过4组。 目前,很多光伏系统采用的是两组并联模式。这样,如果有一组蓄电池出现故障,不能正常工作,就可以将该组蓄电池断开进行维修,而使用另外一组正常的蓄电池,虽然电流有所下降,但系统还能保持在标称电压正常工作。五离网逆变器采用模块部件的完整系统解决方案离网逆变器1台,具有蓄电池过充电、蓄电池过放电、负载过载、负载短路等报警功能,可多路汇流输入控制,采用微电脑芯片智能控制,充放电各参数可设定,
18、各路充电电压检测具有回差控制功能,可防止开关进入振荡状态,控制电路与主电路完全隔离,具有抗干扰能力强,控制器采用LCD液晶显示屏,电量AH累计功能,包括光伏发电量,负载用电量,蓄电池电量的累计功能,有RS485通讯便于实时测控和显示,具有温度补偿功能。离网逆变器建块组成:XW逆变器、充电控制器、自动发电机起动模块,以及系统控制板系统控制板(SCP)实现了简单的配置,防止对参数的意外修改,同类最佳的浪涌性能为负载的起动提供5 kW的真实功率输出(不仅是电流),数字化控制提供了稳定的电压调节,同时为困难负载提供起动浪涌 。单相系统的多单元可扩展性转换器内带Xanbus网络和同步端口,可与同步的转换
19、与充电模块进行无缝的通信,经等效电源功率因数校正的电池充电模块都提供两个AC输入端。最大输出功率5KW,系统最大效率98.5%稳定、高效、安全,采用模块化设计,易于维护,扩容方便,降低初始投资系统智能化跟踪和分析太阳能电池板能量,智能化休眠,提高系统输出效率和电能质量触摸屏可视化操作并配备后台监控软件和信号输出接口。产品概述:采用CPU控制,线路简捷、可靠;采用SPWM脉宽调制技术,输出为稳频稳压、滤除杂讯、失真度低的纯净正弦波;内置旁路开关,市电和逆变快速切换;分市电主供型和电池主供型:A)市电主供型:有市电时,处于市电输出,当市电输入故障时自动切换到逆变输出;B)电池主供型:有市电时,处于
20、逆变输出,当直流输入故障时自动切换到市电输出;允许在开机状态下切断直流,自动切换到市电旁路,不影响负载的供电,方便对蓄电池进行维护和更换;电池电压过高或过低,逆变电源关断输出,如果电池电压恢复正常,电源自动恢复输出;负载过载,逆变电源关断输出,消除过载之后30秒,电源自动恢复输出,此项功能尤其适用于无人值守的通讯基站。主要的逆变电源电路图其原理图见符页六.光伏直流控制柜1.光伏直流控制柜采用高性能元器件,智能化设计。具有性能价格比高、外观漂亮、安装使用方便等众多优点。可以检测每路电流、电压、防雷状态、开关状态,通过智能仪表大屏液晶显示电压电流功率等,通过RS485通讯接口与监控系统通信,实现直
21、流配电柜智能化管理。2.模块化设计,采用高性能霍尔传感器采集;3.采用大屏液晶显示智能仪表,可采集多达16路电流及输出电压,液晶显示电压、电流、功率、防雷状态、开关状态等信息,具有标准的RS485数字通讯接口与监控系统连接;4.浪涌保护器N+1采用国际或国内知名产品(例如:DEHN、PHEONIX、CITEL)。5.防反二级管采用模块化整流二极管,功耗低,性能稳定。6.内部布线合理、布局美观,内部连接都使用铜牌连接;7.防雷接地符合防雷规范技术要求。七光伏交流控制柜光伏交流控制柜按照并网发电单元进行设计,需要配置交流防雷配电柜,主要是将逆变器输出的交流电缆接入后,经过断路器接入电网,提供给用电
22、电器。方便操作和维护。本系列配电柜装置适用于交流50Hz额定电压220V及以下、最大额定电流50A的各种容量等级的低压配电系统。作为各种发电、输电、配电、电能转换和电能消耗的控制设备,提供5千瓦光伏交流控制柜。1.电压指示;2.防逆流控制切换;3.国际知名品牌断路器;4.可根据客户要求提供不同等级雷电防护;5.提供防雷器失效告警干结点;6.提供各种附加要求;7.安装方便,维护简单;1)性能特点1.既可采用固定安装式设计、也可采用插入式设计。2.采用ABB、Schneider等国际、国内知名品牌断路器和元件组合成功能单元,具有优良的技术性能,安全可靠。3.可分别组成各种标准单元模块,供客户任意选
23、用组装。采用区域之间的隔离以及功能单元进线和出线之间的相互隔离,有效的加强安全防护性能。4.组合装配式结构,框架的全部结构件均用螺丝坚固连接,框架及门、面板均经磷化处理后静电喷塑处理,不喷塑部件全部镀锌并经钝化处理5.能满足各种元件的要求并能符合不同工作环境,达到相应的防护等级。6.骨架采用优质钢板,骨架上可带有模数为25mm的孔,可供各种用途扩展,进线方式有上、下侧进线两种方式。7.分断能力高、动热稳定性好,电气方案组合灵活方便、实用性强,主要参数达到国际先进水平。8.重量轻,机械强度和装配精度高,外形美观。1.3工程内容梦之园太阳能发电站光伏发电项目施工主要工程内容为:1) 土建部分包括场
24、地清淤及填土工程、光伏组件基础、逆变器基础、电缆沟、检修道路、清洗给水管路花草移植等。2) 安装部分包括光伏组件及支架安装、逆变器及配电柜安装、汇流箱安装、电缆敷设、展示中心的照明通风、光伏发电组件及逆变器的接地系统、监视系统。一工程特点本发电站建立在已经完整的场地和大楼内,所以对动土开挖必须现场精确定位,及时清除或处理场地内填土层地的耕土、植被土,填土分层填料的厚度、分层压实的遍数,根据所选用的压实设备通过试验确定。地基承载力特征值应根据现场原位测试(静荷载试验、静力触探等)结果确定。二 逆变器基础说明基础混凝土中的任何钢筋应与暴露在混凝土外的临时或永久性的金属件加以绝缘。绑扎垫块和钢筋的铁
25、丝头不得深入保护层内。垫块的外形应尽可能增大渗径,接触摸板的面积尽可能小,并已于固定。混凝土构件拆模后,其表面不得留有螺栓、拉杆、铁钉等铁件。绑扎垫块和钢筋的铁丝头不得深入保护层内。布置预埋管时,钢筋允许在小范围内活动,但不允许截断钢筋。钢筋间隙大于等于200mm时,用直径12mm的钢筋补强。基础混凝土墙不允许设垂直施工缝,可设水平施工缝一道。三 支架基础说明耐久性技术要求a.混凝土中应掺入适量减水剂,在低温状态下施工还应加入适量防冻剂。基础、桩混凝土应采用抗腐蚀混凝土,并应加入钢筋阻锈剂。外加剂掺入量应符合现行国家标准混凝土外加剂应用技术规范的规定。b.混凝土构件及填充墙体表面做1:2.5水
26、泥砂浆面层20厚,设计室外场地标高以下的混凝土构件外立面在水泥砂浆层外应进行耐腐蚀防护。c.结构混凝土耐久性的基本要求:基础最大水灰比最大氯离子含量(%)最大碱含量(%)0.400.13.0注:氯离子含量为其占水泥用量的百分率构件钢筋保护层、钢筋锚固长度及搭接长度a.本工程纵向受力钢筋的混凝土保护层厚度除应不小于受力钢筋的公称直径外,应按下表采用:构件名称保护层厚度(mm)构件名称保护层厚度(mm)柱、梁30板20b.本工程受拉钢筋最小锚固长度按下表规定采用:坑镇等级钢筋种类C30纵向受拉钢筋锚固长度la纵向受拉钢筋抗震锚固涨肚laF纵向受拉钢筋绑扎搭接长度llE三HP B33024d25d3
27、5dHR B33530d31d44d纵向钢筋搭接接头百分率25%。四.钢结构制作及安装所有构件两端必须平整,施焊端面应打磨平整,保证焊接质量。构件的工厂接头设置在受力较小的地方,但同一零件上的拼接不能超过两处,且拼装长度应610mm,拼接接头、翼缘板和腹板的拼接应错开,其余力应200mm,端板与肋板等构件不允许拼接。钢结构表面采用热浸镀锌防腐处理,并喷涂色面漆,防腐处理应在工厂加工时完成,现场焊缝焊接完成后必须将表面焊渣清除,用环氧富锌底漆修复,并喷涂色面漆。五.太阳能光伏电池组布置太阳能光伏电池组件安装容量及型号安装区域晶硅组件组件倾角方位角组件型号总数安装容量/kWp组件类型/个光伏西区Y
28、L235P-29b174004089多晶30度正南偏东30光伏电池组件主要技术参数编号项目名称数据1太阳电池种类单晶硅组件2太阳电池组件型号YL235P-29b3组件标准峰值参数3.1标准功率(W)2353.2峰值电压(V)29.53.3峰值电流(A)7.953.4短路电流(A)8.543.5开路电压(V)37.04组件效率14.4%5可耐系统最大电压(V)10006-40峰值电压(UMPP)(V)34.177最大开路电压(V)42.868外形尺寸(mm)1650*990*509重量(kg)19.5六.逆变器配置序号组串组件构成组串功率kWp/串工作电压/Vmp70工作最大开路电压/Voc配置
29、逆变器参数组件名称数量电压/Vmp型号逆变器编号接入组并联数组件总功率(kw)数量1235W204.7683.43491.76857.20GBL200-5000-HEN02、N07107502.922235W204.7683.43491.76857.20GBL200-5000-HEN01、N03N04、N08109512.343235W204.7683.43491.76857.20GBL200-5000-HEN05N061105172七.混凝土道路土基回填模量需大于20 MPa。当路基落在耕作土层时,需将耕作土挖尽,用好土回填并分层夯实。底层为300厚道渣,然后采用150厚道渣、300厚素土间
30、隔回填,并分层夯实。道路两侧外缘1m范围内原土也应压实,在此范围内如有管沟通过,则原土夯实时应注意加强对管道及沟道的保护。道路基层石料等级不应低于3级。在基层碾压成型后,需检查基层的强度和质量,基层强度以基层顶面的当量回弹模量值为强度检查指标(承载板法),其当量回弹模量值不应低于80 MPa。道路每隔4m设一道横向缩缝。道路每隔32米设一条胀缝,横向施工缝需设置在胀缝处。八.小岛施工 清理水源,考察地基是否影响太阳能支架安装。在光伏场区设DN50主管,主管上引出DN32支母管,支母管上引出DN15给接口,共需要设置接口9个。太阳能电池组件引出口敷设在小岛中心,便于操作和检修,引出口要安装密封防
31、水过度箱,敷设DN50防水软管和防水接头。主管和支管均采用直埋敷设,中心标高埋深到面下1.5m处。露出地面的主管及支架应有防水防潮的保护层。太阳能电池组件的支架采用焊接管。14施工特点1)施工工期紧在80日历天内完成填土,淤泥处理,基础,光伏电池板,汇流箱,交直流柜个等多项工程施工,编制施工组织计划。2)现场施工各工序的协调工作量大本项目施工时在同一块场地光伏设备安装、管道预留预埋、基础、管路安装等多项工程的施工,且各工程不是独立存在的,相互之间均存在着大量的工程接口和相互影响。如何在施工中做好各工序间的协调配合工作将直接影响整体工程的施工进度和质量。3)光伏设备安装工程主要工程数量序号项目名称工程量1测量定位1项2道路开挖120M3花草移植30M4支架基础(4M*3M*2M)*45小岛施工1项6设备安装1项7调试验收1项