八年级数学下册《丰富多彩的正方形》教学设计.docx

上传人:w*** 文档编号:61838713 上传时间:2022-11-21 格式:DOCX 页数:14 大小:23.95KB
返回 下载 相关 举报
八年级数学下册《丰富多彩的正方形》教学设计.docx_第1页
第1页 / 共14页
八年级数学下册《丰富多彩的正方形》教学设计.docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《八年级数学下册《丰富多彩的正方形》教学设计.docx》由会员分享,可在线阅读,更多相关《八年级数学下册《丰富多彩的正方形》教学设计.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、八年级数学下册丰富多彩的正方形教学设计人教版数学八年级下册正方形教案 人教版数学八年级下册正方形教案 一、教材(教材分析) 正方形这节课是九年义务教化人教版数学教材八年级下册第十八章章其次节的内容。纵观整个初中平面几何教材,正方形是在学生驾驭了平行线、三角形、平行四边形、矩形、菱形等有关学问及简洁图形的平移和旋转等平面几何学问,并且具备有初步的视察、操作等活动阅历的基础上出现的。目的在于让学生通过探究正方形的性质,进一步学习、驾驭说理和进行简洁推理的数学方法。这一节课既是前面所学学问的持续,又是对平行四边形、菱形、矩形进行综合的不行缺少的重要环节。 教材从学生年龄特征、文化学问实际水平动身,先

2、让学生动手做,动脑思索,然后与同伴沟通、探究、总结归纳,升华得出正方形的概念,再由概念去探究正方形的性质。这样的支配使学生在整个学习过程中真正享受到探究的乐趣。 本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。依据新课程标准要求及本班学生的实际状况,本节课制定了学问、实力、情感三方面的目标。 (一)学问目标: 1、要求学生驾驭正方形的概念及性质; 2、能正确运用正方形的性质进行简洁的计算、推理、论证。 (二)实力目标: 1、通过本节课培育学生视察、动手、探究、分析、归纳、总结等实力; 2、发展学生合情推理意识,主动探究的习惯,逐步驾驭说理的基本方法。

3、(三)情感目标: 1、让学生树立科学、严谨、理论联系实际的良好学风; 2、培育学生相互帮助、团结协作、相互探讨的团队精神; 3、通过正方形图形的完备性,培育学生品行的完备性。 二、学生:(学生分析) 这节课是在八年级上的一节课。我依据教学目标及八年级学生的特点,多给他们主动表现的机会,既设计肯定的独立思索和独自探究的问题,又设计了让学生自己组织语言培育说理实力,让学生们能逐步提高。 三、教法(教法分析) 针对本节课的特点,采纳实践-视察-总结归纳-运用为主线的教学方法。 通过学生动手及多媒体演示,实行几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过视察、探讨、归纳、总结出正方形性

4、质定理,最终以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。 整个教学过程中老师通过提问、视察、思索、探讨、充分调动学生非智力因素,让学生在老师的引导下自始至终处于一种主动思维,主动学习的学习状态。而老师在其中当好课堂教学的组织者。 四、学法:(学法分析) 本节课重点以培育学生探究精神和分析归纳总结实力为动身点,着重指导学生动手、视察、思索、分析、总结得出结论。在小组探讨中通过相互学习,让学生体验合作学习的乐趣。 五、教学程序: (一)(第一环节)相关学问回顾 以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发觉矩形、菱形的实质是由平行四边形角度、边长的

5、改变得到的。(由课件演示以上两种改变)并启发学生考虑,若这两种改变同时发生在平行四边形上,则会得到什么样的图形? (二)(其次环节)新课讲解 通过学生们的发觉引出课题“正方形” 1、(第一个学问点)正方形的定义 利用课件形象演示出由平行四边形的边、角的改变演化出正方形的过程。请同学们举手发言,归纳总结出正方形定义:四条边都相等且四个角都是直角的四边形叫做正方形。一组邻边相等,且一个角是直角的平行四边形叫做正方形。(投影仪显示)再由此定义启发学生们发觉正方形的三个必要条件,并且由这三个条件通过重新组合即把一个角是直角与平行四边形组合成矩形,再加上一组邻边相等这个条件,可得正方形的其次个理解方法:

6、一组邻边相等的矩形是正方形;或者一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的第三个理解:一个角是直角的菱形是正方形。 此内容借助课件演示其改变过程,进一步启发学生发觉,正方形既是特别的菱形,又是特别的矩形,从而总结出正方形的性质。 2、正方形的性质(由课件演示及学生操作、视察得到) 性质1:正方形的四个角都是直角,四条边都相等; 性质2:正方形的两条对角线相等,并且相互垂直、平分,每条对角线平分一组对角。 3、例题讲解及课堂练习(由课件显示) 设计了两种不同类型的练习题 设计了三道有关正方形与平行四边形、矩形和菱形关系的推断题和正方形性质的选择题,目的是对正方形性质的进一步

7、理解,并考察学生驾驭的状况。 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。 特殊强调证明格式的书写,提高学生的逻辑推理实力, 4、课堂小结 这节课你有什么收获?学到了什么?有什么疑问提出来? 学生总结,老师补充,使学生感觉到自己对正方形的了解有进了一层,从而达到自己心中的完备。 5、观赏实际生活中正方形的应用(课件显示) 第5个环节是我设计了一些正方形在实际生活中应用的图片,在美丽的音乐中观赏实际生活中正方形的应用,再一次让学生们感受正方形的美。 6、作业设计 (我设计的是教材习题及设计题,通过此作业让同学们既巩固了有关正方形的学问,又提高了对几何问题的探究实力和爱好。 六、

8、教学评价: 本课的教学留意挖掘教材中培育创新意识的素材,利用计算机协助教学,为学生营造一种创新的学习氛围。把学生引上探究问题之路,为学生构造一道亮丽的思维风景线,必将调动学生学习的主动性、主动性,体现学生的主体地位。同时,本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学力水平,使传授学问与培育实力融为一体,体现素养教化的精神。 七、教学反思 八年级数学竞赛例题专题-正方形 专题20正方形阅读与思索矩形、菱形、正方形都是平行四边形,但它们都是有特别条件的平行四边形,正方形不仅是特别的平行四边形,而且是邻边相等的特别矩形,也是有一个角是直角的菱形,因此

9、,我们可以利用矩形、菱形的性质来探讨正方形的有关问题正方形问题经常转化为三角形问题解决,在正方形中,我们最简单得到特别三角形、全等三角形,熟识以下基本图形例题与求解【例l】如图,在正方形纸片中,对角线,交于点,折叠正方形纸片,使落在上,点恰好与上的点重合,绽开后,折痕分别交,于点,.下列结论:;四边形是菱形;.其中,正确结论的序号是_(重庆市中考试题)解题思路:本题需综合运用轴对称、菱形判定、数形结合等学问方法【例2】如图1,操作:把正方形的对角线放在正方形的边的延长线上,取线段的中点.连,(1)探究线段,的关系,并加以证明(2)将正方形绕点旋转随意角后(如图2),其他条件不变探究线段,的关系

10、,并加以证明(大连市中考题改编)解题思路:由为中点,想到“中线倍长法”再证三角形全等 【例3】如图,正方形中,是,边上两点,且,于,求证:.(重庆市竞赛试题)解题思路:构造的线段是解本例的关键【例4】如图,正方形被两条与边平行的线段、分割成四个小矩形,是与的交点,若矩形的面积恰是矩形面积的2倍,试确定的大小,并证明你的结论(北京市竞赛试题)解题思路:先揣测的大小,再作出证明,解题的关键是由条件及图形推出隐含的线段间的关系【例5】如图,在正方形中,分别是边,上的点,满意,分别与对角线交于点求证:(1);(2)(四川省竞赛试题)解题思路:对于(1),可作协助线,创建条件,再通过三角形全等,即可解答

11、;对于(2),很简单联想到直角三角形三边关系 【例6】已知:正方形中,绕点顺时针旋转,它的两边分别交,(或它们的延长线)于点当绕点旋转到时(如图1),易证(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明;(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请干脆写出你的猜想(黑龙江省中考试题)解题思路:对于(2),构造是解题的关键 实力训练A级1.如图,若四边形是正方形,是等边三角形,则的度数为_.(北京市竞赛试题)2.四边形的对角线相交于点,给出以下题设条件:;其中,能判定它是正方形的题设条件是_.(把你认为正确的序号都填在横线上)(浙江省中考试题

12、)3如图,边长为1的两个正方形相互重合,按住一个不动,将另一个绕顶点顺时针旋转,则这两个正方形重叠部分的面积是_.(青岛市中考试题)第1题图第3题图第4题图 4.如图,是正方形内一点,将绕点顺时针方向旋转至能与重合,若,则=_.(河南省中考试题)5.将个边长都为的正方形按如图所示摆放,点分别是正方形的中心,则个正方形重叠形成的重叠部分的面积和为()A.BC.D.(晋江市中考试题) 第5题图第6题图 6.如图,以的斜边为一边在的同侧作正方形,设正方形的中心为,连接,假如,则的长为()A.12B8C.D.(浙江省竞赛试题)7如图,正方形中,那么是()A.BC.D.8如图,正方形的面积为256,点在

13、上,点在的延长线上,的面积为200,则的值是()A15B12C11D109如图,在正方形中,是边的中点,与交于点,求证:10.如图,在正方形中,是边的中点,是上的一点,且求证:平分11.如图,已知是正方形对角线上一点,分别是垂足求证:(扬州市中考试题) 12.(1)如图1,已知正方形和正方形,在同一条直线上,为线段的中点探究:线段的关系(2)如图2,若将正方形绕点顺时针旋转,使得正方形的对角线在正方形的边的延长线上,为的中点试问:(1)中探究的结论是否成立?若成立,请证明;若不成立,请说明理由(大连市中考试题) 图1图2 B级1.如图,在四边形中,于,若四边形的面积为8,则的长为_.2.如图,

14、是边长为1的正方形内一点,若,则_.(北京市竞赛试题)3.如图,在中,以为一边向三角形外作正方形,正方形的中心为,且,则的长为_.(“希望杯”邀请赛试题)4.如图:边长肯定的正方形,是上一动点,交于,过作交于点,作于点,连接,下列结论:;为定值,其中肯定成立的是()A.BC.D.5.如图,是正方形,是菱形,则与度数的比值是()A.3B4C.5D.不是整数6.一个周长为20的正方形内接于一个周长为28的正方形,那么从里面正方形的顶点到外面正方形的顶点的最大距离是()A.BC.8D.E.(美国中学考试题)7.如图,正方形中,是的中点,设,在上取一点,使,则的长度等于()A.1B2C.3D.(“希望

15、杯”邀请赛试题)8.已知正方形中,是中点,是延长线上一点,且交平分线于(如图1)(1)求证:;(2)若将上述条件中的“是中点”改为“是上随意一点”其余条件不变(如图2),(1)中结论是否成立?假如成立,请证明;假如不成立,请说明理由;(3)如图2,点是的延长线上(除点外)的随意一点,其他条件不变,则(1)中结论是否成立?假如成立,请证明;假如不成立,请说明理由;(临汾市中考试题)9.已知求证: 10.假如,点分别在正方形的边上,已知的周长等于正方形周长的一半,求的度数(“祖冲之杯”邀请赛试题)11.如图,两张大小适当的正方形纸片,重叠地放在一起,重叠部分是一个凸八边形,对角线分这个八边形为四个

16、小的凸四边形,请你证明:,且(北京市竞赛试题)12.如图,正方形内有一点,以为边向外作正方形和正方形,连接求证:(武汉市竞赛试题) 八年级数学矩形菱形与正方形的性质教案9 16.2矩形、菱形与正方形的性质16.2.1矩形教学目标1探究并驾驭矩形的概念及其特别的性质。2学会识别矩形。3在视察、操作、推理、归纳等探究过程中,发展学生的合情推理实力,进一步培育学生数学说理的习惯与实力。教学重点与难点重点:矩形特别特征与性质的探究过程。难点:学生数学说理实力的培育。教学打算矩形纸张、剪刀、矩形纸板、四段木条做成的平行四边形的活动木框。教学过程一、提问。1平行四边形的特征:对边(),对角(),对角线()

17、。2如图,在同等四边形ABCD中,AE垂直于BC,E是垂足。假如AB=55,那么AD与DAE分别等于多少度?为什么?(让学生回忆平行四边形的特征与识别。)二、引导视察。如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发觉什么?可以发觉,角的大小变更了,但不管如何,它仍旧保持平行四边形的形态。问题:我们若变更平行四边形的内角,使其一个内角恰好为直角,就能得到一个怎样的平行四边形?(老师移动D点,使=90,让学生视察。)从而导人课题:矩形。三、探究特征。1探究。请你作矩形纸板的对角线,探究矩形有哪些特征,并填空。(从边、角、对角线入手。)(1)边:对边相等;(2)角

18、:四个角都相等;(3)对角线:相等。(学生通过自己的操作、视察、猜想,完全可以得到矩形的特征,这对学生来说是富有意义的活动,学生对此也很感爱好。)2请你折一折,视察并填空。(1)矩形是不是中心对称图形?对称中心是()。(2)是不是轴对称图形?对称轴有几条?()。四、应用举例。1例1如图,矩形ABCD被两条对角线分成四个小三角形,假如四个小三角形的周长的和是86厘米,对角线长是13厘米,那么矩形的周长是多少?(矩形的简洁的计算问题必需要求学生驾驭。此题老师板演,让学生说出理论依据。)2请你思索。识别一个四边形是不是矩形的方法。(学生的回答不肯定很完整,可以多让几个学生相互补充,逐步完善,最终老师

19、适当的给以点拔。)五、巩固练习。1如图,在矩形ABCD中,找出相等的线段与相等的角。2如图,矩形ABCD的两条对角线交于点O,且AOD=120,你能说明AC=2AB吗?六、拓展延长。1如图,已知矩形ABCD的两条对角线相交于点O,AOD=120,AB=5厘米,求矩形对角线的长。2工人师傅在做门框或矩形零件时,经常测量它们的两条对角线是否相等来检查直角的精度,为什么?七、课堂小结。这节课你有什么收获?学到了什么?有什么疑问提出来?16.2.2菱形教学目标1探究并驾驭菱形的概念及其特别的性质。2学会识别菱形。3在视察、操作、推理、归纳等探究过程中,发展学生的合情推理实力,进一步培育学生数学说理的习

20、惯与实力。教学重难点重点:菱形特别特征与性质的探究过程。难点:学生数学说理实力的培育。教学打算矩形纸张、剪刀。教学过程一、复习导入。1矩形的性质是什么?2识别矩形的方法有哪些?3导入课题。二、引导视察。1将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发觉这是一个什么样的图形?(同桌相互帮助。)2探究。请你作该菱形的对角线,探究菱形有哪些特征,并填空。(从边、对角线入手。)(1)边:都相等;(2)对角线:相互垂直。(学生通过自己的操作、视察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感爱好。)问题:你怎样发觉的?又是怎样验证的?(可以指名学生到讲台上讲解

21、一下他的结果。)3概括。菱形特征1:菱形的四条边都相等。菱形特征2:菱形的对角线相互垂直平分,并且每一条对角线平分一组对角。引导学生剖析矩形与菱形的区分。矩形的对边平行且相等,四个角都是直角,对角线相等且相互平分;菱形的四条边都相等,对边平行,对角相等,对角线相互垂直平分,每条对角线平分它的一组对角。4请你折折,视察并填空。(引导学生归纳。)(1)菱形是不是中心对称图形?对称中心是_。(2)是不是轴对称图形?对称轴有几条?_。5请你思索。识别一个四边形是不是菱形的方法(学生的回答不肯定很完整,可以多让几个学生补充,逐步完善,最终老师适当的给以点拨。)菱形的识别方法。(1)四条边相等的四边形是菱

22、形。(2)邻边相等的平行四边形是菱形。(3)对角线相互垂直的平行四边形是菱形。三、应用举例。例1如图,在菱形ABCD中,BAD=2B,试说明ABC是等边三角形。此题要求学生尝试说出每一步的依据是什么,用以培育他们的逻辑思维实力和数学说理实力。四、巩固练习。在菱形ABCD中,对角线AC与BD相交于点O,已知AB=5,OA=4,OB=3,求这个菱形的周长与两条对角线的长度。(写出解答过程。)(组内相互检查,指出存在问题。)五、拓展延长。用你认为最简洁的方法画一个菱形。(简要叙述一下步骤。)六、课堂小结。请你写一写今日学习了哪些内容?(写完后相互检查、补充。)16.2.3正方形教学目标1探究并驾驭正

23、方形的概念及其特别的性质。2学会识别正方形。3在视察、操作、推理、归纳等探究过程中,发展学生的合情推理实力,进一步培育学生数学说理的习惯与实力。教学重难点重点:正方形特别特征与性质的探究过程。难点:数学说理实力的培育。教学打算正方形纸张、剪刀。教学过程一、提问。视察正方形有哪些特征?边_角_对角线_。进而导入课题:正方形。二、探究,概括。1探究。视察正方形是否轴对称图形?是否中心对称图形?正方形可以看作为_的菱形;正方形可以看作为_的矩形。(让学生探究、探讨,培育学生的合作实力与意识,也可以指名学生讲讲他的发觉。)2概括。正方形是中心对称图形,也是轴对称图形。正方形可以看作为有一个角是直角的菱

24、形;正方形可以看作为有一组邻边相等的矩形。三、应用举例。例3如图,在正方形ABCD中,求ABD、DAC、DOC的度数。(此题要求学生尝试说出每一步的依据是什么,用以培育他们的逻辑思维实力和数学说理实力。)四、巩固练习。1假如要用给定长度的篱笆围成一个最大面积的四边形区域,那么应当把这区域围成怎样的四边形?2在下列图中,有多少个正方形?有多少个矩形? 五、看谁做的又快又正确?1用纸剪出一个正方形,与你的同伴比一比,看谁又快又正确?六、课堂小结。这节课你有什么收获?学到了什么?有什么疑问提出来? 第14页 共14页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页第 14 页 共 14 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁