《高一数学上册《幂函数的性质与图像》知识点沪教版.docx》由会员分享,可在线阅读,更多相关《高一数学上册《幂函数的性质与图像》知识点沪教版.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学上册幂函数的性质与图像知识点沪教版高一数学上册学问点整理:幂函数的性质 高一数学上册学问点整理:幂函数的性质 定义:形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。定义域和值域:当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数
2、的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种状况来探讨各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:解除了为0与负数两种可能,即对于x;
3、0,则a可以是随意实数;解除了为0这种可能,即对于x;0和x;0的全部实数,q不能是偶数;解除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数; 高一数学上册重要学问点:幂函数 高一数学上册重要学问点:幂函数 幂函数定义: 形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为
4、0,不过这时函数的定义域还必需根据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 性质: 对于a的取值为非零有理数,有必要分成几种状况来探讨各自的特性: 首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+)。当指数n是负
5、整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 解除了为0与负数两种可能,即对于x0,则a可以是随意实数; 解除了为0这种可能,即对于x0和x0的全部实数,q不能是偶数; 解除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下: 假如a为随意实数,则函数的定义域为大于0的全部实数; 假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依
6、据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的随意取值都有意义的,因此下面给出幂函数在第一象限的各自状况. 可以看到: (1)全部的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越
7、小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)明显幂函数无界。 高一数学反函数、幂函数学问点 高一数学反函数、幂函数学问点 1.反函数的定义设函数y=f(x)的定义域是A,值域是C我们从式子y=f(x)中解出x得到式子x=(y)假如对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一的值和它对应,那么式子x=(y)叫函数y=f(x)的反函数,记作x=f-1(y),习惯表示为y=f-1(x)留意:函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域,例如:f(x)的定义域是-1,+,值域是0,+),它的反函数定义
8、域为0,+),值域是-1,+)。2反函数存在的条件根据函数定义,y=f(x)定义域中的每一个元素x,都唯一地对应着值域中的元素y,假如值域中的每一个元素y也有定义域中的唯一的一个元素x和它相对应,即定义域中的元素x和值域中的元素y,通过对应法则y=f(x)存在着一一对应关系,那么函数y=f(x)存在反函数,否则不存在反函数例如:函数y=x2,xR,定义域中的元素1,都对应着值域中的同一个元素1,所以,没有反函数而y=x2,x1表示定义域到值域的一一对应,因而存在反函数3函数与反函数图象间的关系函数y=f(x)和它的反函数y=f-1(x)的图象关于y=x对称若点(a,b)在y=f(x)的图象上,
9、那么点(b,a)在它的反函数y=f-1(x)的图象上4反函数的几个简洁命题(1)一个奇函数y=f(x)假如存在反函数,那么它的反函数y=f-1(x)肯定是奇函数(2)一个函数在某一区间是(减)函数,并且存在反函数,那么它的反函数在相应区间也是增(减)函数 定义:形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。定义域和值域:当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为
10、大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种状况来探讨各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制
11、来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:解除了为0与负数两种可能,即对于x0,则a可以是随意实数;解除了为0这种可能,即对于x0和x0的全部实数,q不能是偶数;解除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域
12、为不等于0的全部实数。在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。由于x大于0是对a的随意取值都有意义的,因此下面给出幂函数在第一象限的各自状况.可以看到:(1)全部的图形都通过(1,1)这点。(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。(4)当a小于0时,a越小,图形倾斜程度越大。(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。(6)明显幂函数无界。 1幂函数解析式的右端是个幂的形
13、式。幂的底数是自变量,指数是常数,可以为任何实数;与指数函数的形式正好相反。2幂函数的图像和性质比较困难,高考只要求驾驭指数为1、2、3、-1、时幂函数的图像和性质。3了解其它幂函数的图像和性质,主要有:当自变量为正数时,幂函数的图像都在第一象限。指数为负数的幂函数都是过点(1,1)的减函数,以坐标轴为渐近线,指数越小越靠近x轴。指数为正数的幂函数都是过原点和(1,1)的增函数;在x=1的右侧指数越大越远离x轴。幂函数的定义域可以依据幂的意义去求出:要么是x0,要么是关于原点对称。前者只在第一象限有图像;后者肯定具有奇偶性,利用对称性可以画出二或三象限的图像。留意第四象限肯定不会有图像。定义域
14、关于原点对称的幂函数肯定具有奇偶性。当指数是偶数或分子是偶数的分数时是偶函数;否则是奇函数。4幂函数奇偶性的一般规律:指数是偶数的幂函数是偶函数。指数是奇数的幂函数是奇函数。指数是分母为偶数的分数时,定义域x0或x0,没有奇偶性。指数是分子为偶数的分数时,幂函数是偶函数。指数是分子分母为奇数的分数时,幂函数是奇数函数。 高一数学上册学问点整理:幂函数 高一数学上册学问点整理:幂函数 定义:形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。定义域和值域:当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数;假如
15、a为负数,则x确定不能为0,不过这时函数的定义域还必需根据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种状况来探讨各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,
16、+)。当指数n是负整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:解除了为0与负数两种可能,即对于x0,则a可以是随意实数;解除了为0这种可能,即对于x0和x0的全部实数,q不能是偶数;解除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下: 假如a为随意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域
17、还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。由于x大于0是对a的随意取值都有意义的,因此下面给出幂函数在第一象限的各自状况.可以看到:(1)全部的图形都通过(1,1)这点。(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。(4)当a小于0时,a越小,图形倾斜程度越大。(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。(6)明显幂函数无界。 第10页 共10页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页