《高中数学完整讲义——空间几何量的计算4.二面角.pdf》由会员分享,可在线阅读,更多相关《高中数学完整讲义——空间几何量的计算4.二面角.pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、万两黄金容易得,知心一个也难求。曹雪芹吾日三省乎吾身。为人谋而不忠乎?与朋友交而不信乎?传不习乎?论语 【例1】(06四川卷理 10)已知球O的半径是 1,A、B、C三点都在球面上,A、B两点和A、C两点的球面距离都是4,B、C两点的球面距离是3,则二面角BOAC的大小是()A4 B3 C2 D23 【例2】(2009 浙江 17)如图,在长方形ABCD中,2AB,1BC,E为DC的中点,F为线段EC(端点除外)上一动点 现将AFD沿AF折起,使平面ABD 平面ABC 在平面ABD内过点D作DKAB,K为垂足设AKt,则t的取值范围是 【例3】正方体1111ABCDABC D中,作截面1BDC
2、,求二面角1BDCC的正切值的大小 【例4】如图,正方体1111ABCDABC D中求平面1ABD和平面1C BD相交所组成的二面角11ABDC的余弦值 OA1D1C1B1DCBA典例分析 板块四.二面角 常将有日思无日,莫待无时思有时。增广贤文一寸光阴一寸金,寸金难买寸光阴。增广贤文 【例5】如图,正方体1111ABCDABC D的棱长为1,P是AB的中点 求二面角1ABCA的大小;求二面角1BACP的大小 【例6】如图,已知边长为a的正ABC,以它的高AD为折痕,把它折成一个二面角BADC 求AB和面B CD所成的角;若二面角BADC的平面角为120,求出二面角ABCD的余弦值 【例7】在
3、正方体1111ABCDABC D中,棱长为1,且P、Q、R分别为AB、AD、1DD的中点求截面PQR与面11CC D D所成的锐角二面角的正切值 OA1D1C1B1DCBAPFEA1D1C1B1DCBAMABCDB大丈夫处世,不能立功建业,几与草木同腐乎?罗贯中忍一句,息一怒,饶一着,退一步。增广贤文【例8】如图,四边形ABCD是面积为2 3的菱形,DAB为菱形的锐角,P是平面外的一点,PAD是边长为2的正三角形,平面PAD平面ABCD,M是PC的中点 求证:PBAD;求证:平面ADM平面PBC 【例9】长方体1111ABCDABC D中,1ACa,1AC与平面ABCD成30角,与平面11B BCC成45角,求二面角1BACC的正弦值或余弦值的大小 【例10】如图所示,正三棱柱111ABCABC的底边长为2,高为4,过AB作一截面交侧棱1CC于P,截面与底面成60角,求截面PAB的面积 EPBCDAMFED1C1B1A1DCBAPBC1B1A1CA