统计学~课后练习答案.doc

上传人:飞****2 文档编号:61377065 上传时间:2022-11-21 格式:DOC 页数:86 大小:3.05MB
返回 下载 相关 举报
统计学~课后练习答案.doc_第1页
第1页 / 共86页
统计学~课后练习答案.doc_第2页
第2页 / 共86页
点击查看更多>>
资源描述

《统计学~课后练习答案.doc》由会员分享,可在线阅读,更多相关《统计学~课后练习答案.doc(86页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、31 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。服务质量的等级分别表示为:A好;B较好;C一般;D较差;E.差。调查结果如下:BECCADCBAEDACBCDECEEADBCCAEDCBBACDEABDDCCBCEDBCCBCDACBCDECEBBECCADCBAEBACEEABDDCADBCCAEDCBCBCEDBCCBC 要求:(1)指出上面的数据属于什么类型。 顺序数据(2)用Excel制作一张频数分布表。 用数据分析直方图制作:接收频率E16D17C32B21A14 (3)绘制一张条形图,反映评价等级的分布。 用数据分析直方图制作:(4)绘制评价等级的帕累托

2、图。逆序排序后,制作累计频数分布表:接收频数频率(%)累计频率(%)C323232B212153D171770E161686A141410032 某行业管理局所属40个企业2002年的产品销售收入数据如下:1521241291161001039295127104105119114115871031181421351251171081051101071371201361171089788123115119138112146113126要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。1、确定组数: ,取k=62、确定组距: 组距( 最大值 - 最小值) 组数=

3、(152-87)6=10.83,取103、分组频数表销售收入频数频率%累计频数累计频率%80.00 - 89.0025.025.090.00 - 99.0037.5512.5100.00 - 109.00922.51435.0110.00 - 119.001230.02665.0120.00 - 129.00717.53382.5130.00 - 139.00410.03792.5140.00 - 149.0025.03997.5150.00+12.540100.0总和40100.0(2)按规定,销售收入在125万元以上为先进企业,115125万元为良好企业,105115 万元为一般企业,10

4、5万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。频数频率%累计频数累计频率%先进企业1025.01025.0良好企业1230.02255.0一般企业922.53177.5落后企业922.540100.0总和40100.033 某百货公司连续40天的商品销售额如下: 单位:万元41252947383430384340463645373736454333443528463430374426384442363737493942323635 要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。1、确定组数: ,取k=62、确定组距: 组距( 最大值 - 最小值)

5、组数=(49-25)6=4,取53、分组频数表销售收入(万元)频数频率%累计频数累计频率%= 2512.512.526 - 30512.5615.031 - 35615.01230.036 - 401435.02665.041 - 451025.03690.046+410.040100.0总和40100.034 利用下面的数据构建茎叶图和箱线图。572929363123472328283551391846182650293321464152282143194220data Stem-and-Leaf Plot Frequency Stem & Leaf 3.00 1 . 889 5.00 2

6、. 01133 7.00 2 . 2.00 3 . 13 3.00 3 . 569 3.00 4 . 123 3.00 4 . 667 3.00 5 . 012 1.00 5 . 7 Stem width: 10 Each leaf: 1 case(s)36一种袋装食品用生产线自动装填,每袋重量大约为50g,但由于某些原因,每袋重量不会恰好是50g。下面是随机抽取的100袋食品,测得的重量数据如下: 单位:g5746495455584961514951605254515560564747535148535052404557535251464847534753444750525347454854

7、5248464952595350435346574949445752424943474648515945454652554749505447484457475358524855535749565657534148要求:(1)构建这些数据的频数分布表。(2)绘制频数分布的直方图。(3)说明数据分布的特征。解:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。1、确定组数: ,取k=6或72、确定组距: 组距( 最大值 - 最小值) 组数=(61-40)6=3.5,取3或者4、5 组距( 最大值 - 最小值) 组数=(61-40)7=3,3、分组频数表组距3,上限为小

8、于 频数百分比累计频数累积百分比有效40.00 - 42.0033.033.043.00 - 45.0099.01212.046.00 - 48.002424.03636.049.00 - 51.001919.05555.052.00 - 54.002424.07979.055.00 - 57.001414.09393.058.00+77.0100100.0合计100100.0直方图:组距4,上限为小于等于 频数百分比累计频数累积百分比有效= 40.0011.011.041.00 - 44.0077.088.045.00 - 48.002828.03636.049.00 - 52.002828

9、.06464.053.00 - 56.002222.08686.057.00 - 60.001313.09999.061.00+11.0100100.0合计100100.0直方图:组距5,上限为小于等于 频数百分比累计频数累积百分比有效= 45.001212.012.012.046.00 - 50.003737.049.049.051.00 - 55.003434.083.083.056.00 - 60.001616.099.099.061.00+11.0100.0100.0合计100100.0直方图:分布特征:左偏钟型。3.8 下面是北方某城市12月份各天气温的记录数据:-32-4-7-11

10、-1789-614-18-15-9-6-105-4-96-8-12-16-19-15-22-25-24-19-8-6-15-11-12-19-25-24-18-17-14-22-13-9-60-15-4-9-32-4-4-16-175-6-5要求: (1)指出上面的数据属于什么类型。 数值型数据 (2)对上面的数据进行适当的分组。 1、确定组数: ,取k=72、确定组距: 组距( 最大值 - 最小值) 组数=(14-(-25))7=5.57,取53、分组频数表温度频数频率%累计频数累计频率%-25 - -21610.0610.0-20 - -16813.31423.3-15 - -11915.

11、02338.3-10 - -61220.03558.3-5 - -11220.04778.30 - 446.75185.05 - 9813.35998.310+11.760100.0合计60100.0 (3)绘制直方图,说明该城市气温分布的特点。3.11 对于下面的数据绘制散点图。x234187y252520301618解:312 甲乙两个班各有40名学生,期末统计学考试成绩的分布如下:考试成绩人数甲班乙班优良中及格不及格361894615982要求:(1)根据上面的数据,画出两个班考试成绩的对比条形图和环形图。(2)比较两个班考试成绩分布的特点。甲班成绩中的人数较多,高分和低分人数比乙班多,

12、乙班学习成绩较甲班好,高分较多,而低分较少。(3)画出雷达图,比较两个班考试成绩的分布是否相似。分布不相似。3.14 已知19952004年我国的国内生产总值数据如下(按当年价格计算): 单位:亿元年份国内生产总值第一产业第二产业第三产业199519961997199819992000200120022003200458478.1678846744626783452820675894681973148.3291199313844.21421121455241447196146282154118161173169281207680728538336133722338619405584493548

13、75052980612747238717947204282302925174270382990533153360753918843721要求:(1)用Excel绘制国内生产总值的线图。(2)绘制第一、二、三产业国内生产总值的线图。(3)根据2004年的国内生产总值及其构成数据绘制饼图。第四章 统计数据的概括性描述41 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。 (2)根据定义公式计算四分位数。 (3)计算销售量的标准差。 (4)说明汽车销售量分布的特征。解: S

14、tatistics汽车销售数量 NValid10Missing0Mean9.60Median10.00Mode10Std. Deviation4.169Percentiles256.255010.007512.5042 随机抽取25个网络用户,得到他们的年龄数据如下: 单位:周岁19152925242321382218302019191623272234244120311723要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄 FrequencyPercentCumulative FrequencyCumulative PercentValid1514

15、.014.01614.028.01714.0312.01814.0416.019312.0728.02028.0936.02114.01040.02228.01248.023312.01560.02428.01768.02514.01872.02714.01976.02914.02080.03014.02184.03114.02288.03414.02392.03814.02496.04114.025100.0Total25100.0从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。(2)根据定义公式计算四分位数。Q1位置=25/4=6.25,因此Q1=19,Q3位置=3

16、25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.752=26.5。(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。如需看清楚分布形态,需要进行分组。为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数: ,取k=62、确定组距:组距( 最大值 - 最小值) 组数=(41-15)6=4.3,取53、分组频数表网络用户的

17、年龄 (Binned) FrequencyPercentCumulative FrequencyCumulative PercentValid= 1514.014.016 - 20832.0936.021 - 25936.01872.026 - 30312.02184.031 - 3528.02392.036 - 4014.02496.041+14.025100.0Total25100.0分组后的均值与方差:Mean23.3000Std. Deviation7.02377Variance49.333Skewness1.163Kurtosis1.302分组后的直方图:43 某银行为缩短顾客到银行

18、办理业务等待的时间。准备采用两种排队方式进行试验:一种是所有颐客都进入一个等待队列:另种是顾客在三千业务窗口处列队3排等待。为比较哪种排队方式使顾客等待的时间更短两种排队方式各随机抽取9名顾客。得到第一种排队方式的平均等待时间为72分钟,标准差为197分钟。第二种排队方式的等待时间(单位:分钟)如下:55 66 67 68 71 73 74 78 78要求:(1)画出第二种排队方式等待时间的茎叶图。 第二种排队方式的等待时间(单位:分钟) Stem-and-Leaf Plot Frequency Stem & Leaf 1.00 Extremes (=5.5) 3.00 6 . 678 3.0

19、0 7 . 134 2.00 7 . 88 Stem width: 1.00 Each leaf: 1 case(s)(2)计算第二种排队时间的平均数和标准差。 Mean7Std. Deviation0.Variance0.51(3)比较两种排队方式等待时间的离散程度。第二种排队方式的离散程度小。(4)如果让你选择一种排队方式,你会选择哪种?试说明理由。 选择第二种,均值小,离散程度小。44 某百货公司6月份各天的销售额数据如下:单位:万元257276297252238310240236265278271292261281301274267280291258272284268303273263

20、322249269295要求:(1)计算该百货公司日销售额的平均数和中位数。(2)按定义公式计算四分位数。(3)计算日销售额的标准差。解: Statistics百货公司每天的销售额(万元) NValid30Missing0Mean274.1000Median272.5000Std. Deviation21.17472Percentiles25260.250050272.500075291.250045 甲乙两个企业生产三种产品的单位成本和总成本资料如下:产品单位成本总成本(元)名称(元)甲企业乙企业ABC1520302 1003 0001 5003 2551 5001 500要求:比较两个企业

21、的总平均成本,哪个高,并分析其原因。产品名称单位成本(元)甲企业乙企业总成本(元)产品数总成本(元)产品数A1521001403255217B203000150150075C30150050150050平均成本(元)19.18. 调和平均数计算,得到甲的平均成本为19.41;乙的平均成本为18.29。甲的中间成本的产品多,乙的低成本的产品多。46 在某地区抽取120家企业,按利润额进行分组,结果如下:按利润额分组(万元)企业数(个)200300300400400500500600600以上1930421811合 计120要求:(1)计算120家企业利润额的平均数和标准差。(2)计算分布的偏态系

22、数和峰态系数。解:Statistics企业利润组中值Mi(万元) NValid120Missing0Mean426.6667Std. Deviation116.48445Skewness0.208Std. Error of Skewness0.221Kurtosis-0.625Std. Error of Kurtosis0.43847 为研究少年儿童的成长发育状况,某研究所的一位调查人员在某城市抽取100名717岁的少年儿童作为样本,另一位调查人员则抽取了1 000名717岁的少年儿童作为样本。请回答下面的问题,并解释其原因。(1)两位调查人员所得到的样本的平均身高是否相同?如果不同,哪组样本

23、的平均身高较大?(2)两位调查人员所得到的样本的标准差是否相同?如果不同,哪组样本的标准差较大?(3)两位调查人员得到这l 100名少年儿童身高的最高者或最低者的机会是否相同?如果不同,哪位调查研究人员的机会较大?解:(1)不一定相同,无法判断哪一个更高,但可以判断,样本量大的更接近于总体平均身高。(2)不一定相同,样本量少的标准差大的可能性大。(3)机会不相同,样本量大的得到最高者和最低者的身高的机会大。48 一项关于大学生体重状况的研究发现男生的平均体重为60kg,标准差为5kg;女生的平均体重为50kg,标准差为5kg。请回答下面的问题:(1)是男生的体重差异大还是女生的体重差异大?为什

24、么? 女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。(2)以磅为单位(1ks22lb),求体重的平均数和标准差。 都是各乘以2.21,男生的平均体重为60kg2.21=132.6磅,标准差为5kg2.21=11.05磅;女生的平均体重为50kg2.21=110.5磅,标准差为5kg2.21=11.05磅。(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间? 计算标准分数: Z1=-1;Z2=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。(4)粗略地估计一下,女生中有百分之几的人体重在40kg60kg之间? 计算标准分

25、数: Z1=-2;Z2=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。49 一家公司在招收职员时,首先要通过两项能力测试。在A项测试中,其平均分数是100分,标准差是15分;在B项测试中,其平均分数是400分,标准差是50分。一位应试者在A项测试中得了115分,在B项测试中得了425分。与平均分数相比,该应试者哪一项测试更为理想?解:应用标准分数来考虑问题,该应试者标准分数高的测试理想。ZA=1;ZB=0.5因此,A项测试结果理想。410 一条产品生产线平均每天的产量为3 700件,标准差为50件。如果某一天的产量低于或高于平均产量,并落人士2个标准差的范围之外,就认为该

26、生产线“失去控制”。下面是一周各天的产量,该生产线哪几天失去了控制?时间周一 周二 周三 周四 周五 周六 周日产量(件)3 850 3 670 3 690 3 720 3 610 3 590 3 700 时间周一周二周三周四周五周六周日产量(件)3850367036903720361035903700日平均产量3700日产量标准差50标准分数Z3-0.6-0.20.4-1.8-2.20标准分数界限-2-2-2-2-2-2-22222222 周六超出界限,失去控制。411 对10名成年人和10名幼儿的身高进行抽样调查,结果如下:成年组166 169 l72 177 180 170 172 17

27、4 168 173幼儿组68 69 68 70 7l 73 72 73 74 75要求:(1)如果比较成年组和幼儿组的身高差异,你会采用什么样的统计量?为什么? 均值不相等,用离散系数衡量身高差异。(2)比较分析哪一组的身高差异大?成年组幼儿组平均172.1平均71.3标准差4.标准差2.离散系数0.离散系数0. 幼儿组的身高差异大。412 一种产品需要人工组装,现有三种可供选择的组装方法。为检验哪种方法更好,随机抽取15个工人,让他们分别用三种方法组装。下面是15个工人分别用三种方法在相同的时间内组装的产品数量: 单位:个方法A方法B方法C16416716816517016516416816

28、416216316616716616512913012913013130129127128128127128128125132125126126127126128127126127127125126116126125要求:(1)你准备采用什么方法来评价组装方法的优劣?(2)如果让你选择一种方法,你会作出怎样的选择?试说明理由。解:对比均值和离散系数的方法,选择均值大,离散程度小的。方法A方法B方法C平均165.6平均128.平均125.标准差2.标准差1.标准差2. 离散系数: VA=0.,VB= 0.,VC= 0.均值A方法最大,同时A的离散系数也最小,因此选择A方法。413 在金融证券领域

29、,一项投资的预期收益率的变化通常用该项投资的风险来衡量。预期收益率的变化越小,投资风险越低;预期收益率的变化越大,投资风险就越高。下面的两个直方图,分别反映了200种商业类股票和200种高科技类股票的收益率分布。在股票市场上,高收益率往往伴随着高风险。但投资于哪类股票,往往与投资者的类型有一定关系。(1)你认为该用什么样的统计量来反映投资的风险? 标准差或者离散系数。(2)如果选择风险小的股票进行投资,应该选择商业类股票还是高科技类股票? 选择离散系数小的股票,则选择商业股票。(3)如果进行股票投资,你会选择商业类股票还是高科技类股票? 考虑高收益,则选择高科技股票;考虑风险,则选择商业股票。

30、6.1 调节一个装瓶机使其对每个瓶子的灌装量均值为盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差盎司的正态分布。随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量。试确定样本均值偏离总体均值不超过0.3盎司的概率。解:总体方差知道的情况下,均值的抽样分布服从的正态分布,由正态分布,标准化得到标准正态分布:z=,因此,样本均值不超过总体均值的概率P为:=2-1,查标准正态分布表得=0.8159因此,=0.63186.3 ,表示从标准正态总体中随机抽取的容量,n=6的一个样本,试确定常数b,使得解:由于卡方分布是由标准正态分布的平方和构成的:设Z1,Z2,Zn是来自总体N(

31、0,1)的样本,则统计量服从自由度为n的2分布,记为2 2(n)因此,令,则,那么由概率,可知:b=,查概率表得:b=12.596.4 在习题6.1中,假定装瓶机对瓶子的灌装量服从方差的标准正态分布。假定我们计划随机抽取10个瓶子组成样本,观测每个瓶子的灌装量,得到10个观测值,用这10个观测值我们可以求出样本方差,确定一个合适的范围使得有较大的概率保证S2落入其中是有用的,试求b1,b2,使得解:更加样本方差的抽样分布知识可知,样本统计量: 此处,n=10,所以统计量根据卡方分布的可知:又因为:因此:则:查概率表:=3.325,=19.919,则=0.369,=1.88第四章 抽样分布与参数

32、估计7.2 某快餐店想要估计每位顾客午餐的平均花费金额。在为期3周的时间里选取49名顾客组成了一个简单随机样本。(1)假定总体标准差为15元,求样本均值的抽样标准误差。=2.143(2)在95的置信水平下,求边际误差。 ,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t= 因此,=1.962.143=4.2(3)如果样本均值为120元,求总体均值 的95的置信区间。 置信区间为: =(115.8,124.2)7.4 从总体中抽取一个n=100的简单随机样本,得到=81,s=12。要求:大样本,样本均值服从正态分布:或置信区间为:,=1.2(1)构建的90的置信区间。=1.645,置信区

33、间为:=(79.03,82.97)(2)构建的95的置信区间。=1.96,置信区间为:=(78.65,83.35)(3)构建的99的置信区间。=2.576,置信区间为:=(77.91,84.09)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.33.16.25.82.34.15.44.53.24.42.05.42.66.41.83.55.72.32.11.91.25.14.34.23.60.81.54.71.41.22.93.52.40.53.62.5求该校大学生平均上网时间的置信区间,置

34、信水平分别为90,95和99。解:(1)样本均值=3.32,样本标准差s=1.61;(2)抽样平均误差: 重复抽样:=1.61/6=0.268 不重复抽样:=0.268=0.2680.998=0.267(3)置信水平下的概率度: =0.9,t=1.645 =0.95,t=1.96 =0.99,t=2.576(4)边际误差(极限误差): =0.9,=重复抽样:=1.6450.268=0.441不重复抽样:=1.6450.267=0.439 =0.95,=重复抽样:=1.960.268=0.525不重复抽样:=1.960.267=0.523 =0.99,=重复抽样:=2.5760.268=0.69

35、不重复抽样:=2.5760.267=0.688(5)置信区间:=0.9,重复抽样:=(2.88,3.76)不重复抽样:=(2.88,3.76) =0.95, 重复抽样:=(2.79,3.85)不重复抽样:=(2.80,3.84) =0.99, 重复抽样:=(2.63,4.01)不重复抽样:=(2.63,4.01)7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95的置信区间。解:小样本,总体方差未知,用t统计量均值=9.375,样本标准差s=4.11置信区间:=0.95,n=16,=2.13=(7.18,11.57)711 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为l00g。现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,测得每包重量(单位:g)如下:每包重量(g)包数969898100100102102104104106233474合计50 已知食品包重量服从正态分布,要求: (1)确定该种食品平均重量的95的置信区间。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁