《函数高考复习课件(2)高品质版知识分享.ppt》由会员分享,可在线阅读,更多相关《函数高考复习课件(2)高品质版知识分享.ppt(67页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、函数高考复习课件函数高考复习课件(2)(2)高品高品质版质版一、函数的奇偶性奇偶性定义函数图象特点偶函数如果对于函数f(x)的定义域内 x都有 ,那么函数f(x)是偶函数关于对称奇函数如果对于函数f(x)的定义域内 x都有 ,那么函数f(x)是奇函数关于对称任意一个f(x)f(x)任意一个f(x)f(x)y轴原点1奇(偶)函数的定义域有何特点?提示:若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称反之,若函数的定义域不关于原点对称,则该函数无奇偶性二、奇偶函数的性质1奇函数在关于原点对称的区间上的单调性 ,偶函数在关于原点对称的区间上的单调性 (填“相同”、“相反”)2在相同的定义域内
2、(1)两个奇函数的和是,两个奇函数的积是(2)两个偶函数的和、积是 (3)一个奇函数,一个偶函数的积是 3若f(x)是奇函数且在x0处有定义,则f(0)0.4若f(x)是偶函数,则有f(x)f(x)f(|x|)相同相反奇函数偶函数偶函数奇函数2若f(x)是偶函数且在x0处有定义,是否有f(0)0?提示:不一定,如f(x)x21,而f(0)1.三、周期性1周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT),那么就称函数yf(x)为周期函数,称T为这个函数的周期2最小正周期:如果在周期函数f(x)的所有周期中 的正数,那么这个 正数就叫做f(x)的最
3、小正周期f(x)存在一个最小最小3对称性与周期性的关系(1)若函数f(x)关于直线xa和直线xb对称,则函数f(x)必为周期函数,2|ab|是它的一个周期;(2)若函数f(x)关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|ab|是它的一个周期;(3)若函数f(x)关于点(a,0)和直线xb对称,则函数f(x)必为周期函数,4|ab|是它的一个周期3一个函数若具有周期性,其周期唯一吗?提示:若T为函数yf(x)的周期,则kT(k0)也为函数的周期,故周期不唯一1设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()Af(x)|g(x)|是偶函数Bf(x
4、)|g(x)|是奇函数C|f(x)|g(x)是偶函数D|f(x)|g(x)是奇函数解析:函数f(x)和g(x)分别是R上的偶函数和奇函数,f(x)f(x),g(x)g(x)令F(x)f(x)|g(x)|,F(x)f(x)|g(x)|f(x)|g(x)|f(x)|g(x)|F(x)故F(x)为偶函数,即f(x)|g(x)|是偶函数答案:A2若函数f(x)是定义在R上的偶函数,在(,0上是减函数,且f(2)0,则使得f(x)0的取值范围是()A(,2)B(2,)C(,2)(2,)D(2,2)解析:f(x)是偶函数且在(,0上是减函数,且f(2)f(2)0,可画示意图如图所示,由图知f(x)0的解集
5、为(2,2)答案:D3(2013长沙模拟)函数f(x)的定义域为R,且满足:f(x)是偶函数,f(x1)是奇函数若f(0.5)9,则f(8.5)等于()A9B9C3D0解析:f(x)f(x),f(x1)f(x1),f(2x)f(x)f(x),则f(4x)f(x2)f(x),即4是函数f(x)的一个周期,f(8.5)f(0.5)9,故应选B.答案:B5设f(x)是(,)上的奇函数,且f(x2)f(x),下面关于f(x)的判定,其中所有正确命题的序号为_f(4)0;f(x)是以4为周期的函数;f(x)的图象关于x1对称;f(x)的图象关于x2对称解析:f(x2)f(x),f(x4)f(x2)f(x
6、),f(x)的周期为4,f(4)f(0)0.又f(x2)f(x)f(x),f(x)的图象关于x1对称综上正确答案:【考向探寻】1运用函数奇偶性的定义判断2运用函数图象判断3抽象函数的奇偶性的判断,注意挖掘函数“原形”,常采用“赋值”等策略(1)令xy0,得f(0);然后令yx,判断f(x)与f(x)的关系即可(2)首先判断函数的定义域,若可能具有奇偶性,则在定义域的条件下对函数式进行适当的化简;最后判断f(x)与f(x)间的关系(相等还是互为相反数)(1)解析:显然f(x)的定义域是R,关于原点对称又函数f(x)对一切x、yR都有f(xy)f(x)f(y),令xy0,得f(0)2f(0),f(
7、0)0.再令yx,得f(0)f(x)f(x),f(x)f(x),f(x)为奇函数答案:奇【互动探究】在本例(1)中增加条件“若x0时,f(x)x1,则f(x2)f(x1)f(x2x1x1)f(x1)f(x2x1)f(x1)f(x1)f(x2x1)x2x1,x2x10,f(x2x1)0,f(x2)0时,f(x)x22x,求当x0时,f(x)_.(3)已知f(x)是定义在R上的偶函数,且在0,)上是减函数,若f(a)f(2),求实数a的取值范围(2)解析:当x0,则f(x)(x)22(x)x22x.又f(x)为奇函数,f(x)f(x)故f(x)f(x)(x22x),因此当x0时,f(x)x22x.
8、答案:x22x(3)解:f(x)是定义在R上的偶函数,f(|a|)f(a),则f(a)f(2)f(|a|)f(2),又f(x)在0,)上是减函数,f(|a|)f(2)|a|2,解得2a2.根据奇偶性讨论函数的单调区间是常用的方法奇函数在两个对称区间上的单调性相同;偶函数在两个对称区间上的单调性相反所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可函数的奇偶性体现的是一种对称关系【活学活用】1(1)函数f(x)(a1)x2(a21)x1是偶函数,则a的值为_解析:由f(x)为偶函数得f(x)f(x),即(a1)x2(a21)x1(a1)x2(a21)x1.a210,a1.答案:
9、1(2)设f(x)是定义在R上的奇函数,若当x0时,f(x)log2(x1),则f(3)_.解析:f(3)f(3)log2(31)2.答案:2【考向探寻】1求函数的周期;2利用函数的周期性求值【典例剖析】(1)已知定义在R上的奇函数f(x)满足f(x1)f(x),则f(2 012)等于_(2)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x2)f(x)当x0,2时,f(x)2xx2.求证:f(x)是周期函数;当x2,4时,求f(x)的解析式;计算f(0)f(1)f(2)f(2 013)题号分析(1)根据f(x1)f(x)求出周期,根据周期及f(0)0求值(2)根据定义求解;由奇偶性确
10、定2,0上的解析式,再根据周期性求2,4上的解析式;利用周期性求和.(1)解析:f(x1)f(x),f(x2)f(x1)f(x)函数f(x)的周期为2.f(2 012)f(0)又f(x)为定义在R上的奇函数,f(0)0.答案:0(2)解:证明:f(x2)f(x),f(x4)f(x2)f(x)f(x)是周期为4的周期函数当x2,0时,x0,2,由已知得f(x)2(x)(x)22xx2.又f(x)是奇函数,f(x)f(x)2xx2,f(x)x22x,x2,0又当x2,4时,x42,0,f(x4)(x4)22(x4)又f(x)是周期为4的周期函数,f(x)f(x4)(x4)22(x4)x26x8.从
11、而求得x2,4时,f(x)x26x8.f(0)0,f(2)0,f(1)1,f(3)1.又f(x)是周期为4的周期函数,f(0)f(1)f(2)f(3)f(4)f(5)f(6)f(7)f(2 008)f(2 009)f(2 010)f(2 011)0.f(0)f(1)f(2)f(2 013)0f(2 012)f(2 013)f(0)f(1)1.(2)如果T是函数yf(x)的周期,则kT(kZ,k0)也是函数yf(x)的周期,即f(xkT)f(x);若已知区间m,n(mn)上的图象,则可画出区间mkT,nkT(kZ,k0)上的图象函数的周期性通常通过函数的奇偶性得到【活学活用】2(1)已知定义在R
12、上的奇函数f(x)满足f(x4)f(x),且在区间0,2上是增函数,则()Af(25)f(11)f(80)Bf(80)f(11)f(25)Cf(11)f(80)f(25)Df(25)f(80)f(11)解析:由函数f(x)是奇函数且f(x)在0,2上是增函数可以推知,f(x)在2,2上递增,又f(x4)f(x)f(x8)f(x4)f(x),故函数f(x)以8为周期,f(25)f(1),f(11)f(3)f(34)f(1),f(80)f(0),故f(25)f(80)f(11)故选D.答案:D(2)已知f(x)是定义在R上的函数,且满足f(1x)f(1x),则“f(x)为偶函数”是“2为函数f(x
13、)的一个周期”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解析:若f(x)是偶函数,则f(x2)f(1(1x)f(1(1x)f(x)f(x),即f(x)的一个周期为2.若2是f(x)的一个周期,则f(x)f(x2)f(1(1x)f(1(1x)f(x),即f(x)是偶函数,综上知“f(x)为偶函数”是“2为函数f(x)的一个周期”的充要条件答案:C (12分)函数f(x)的定义域Dx|x0,且满足对任意x1,x2D都有f(x1x2)f(x1)f(x2)(1)求f(1)的值;(2)判断f(x)的奇偶性并证明;(3)如果f(4)1,f(3x1)f(2x6)3,且f(x)在(
14、0,)上是增函数,求x的取值范围(1)令x1x21,有f(11)f(1)f(1),解得f(1)0.2分(2)f(x)为偶函数,证明如下:4分令x1x21,有f(1)(1)f(1)f(1),解得f(1)0.令x11,x2x,有f(x)f(1)f(x),f(x)f(x)f(x)为偶函数.7分(3)f(44)f(4)f(4)2,f(164)f(16)f(4)3.8分由f(3x1)f(2x6)3,变形为f(3x1)(2x6)f(64)(*)f(x)为偶函数,f(x)f(x)f(|x|)不等式(*)等价于f|(3x1)(2x6)|f(64).9分 解函数不等式的问题一般步骤第一步,确定函数f(x)在给定
15、区间上的单调性;第二步,利用奇偶性将函数不等式转化为f(M)f(N)的形式;第三步,运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步,解不等式或不等式组确定解集;第五步,反思回顾,查看关键点、易错点及解题规范 函数的奇偶性主要体现为f(x)与f(x)的相等或相反关系,而根据周期函数的定义知,函数的周期性主要体现为f(xT)与f(x)的关系,它们都与f(x)有关,因此,在一些题目中,函数的周期性常常通过函数的奇偶性得到函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律,因此,在解题时,往往需借助函数的奇偶性或周期性来确定函数在
16、另一区间上的单调性,即实现区间的转换,再利用单调性来解决相关问题活 页 作 业谢谢观看!谢谢观看!随着年岁的叠加,我们会渐渐发现:越是有智慧的人,越是谦虚,因为昂头的只是稗子,低头的才是稻子;越是富有的人,越是高贵,因为真正的富裕是灵魂上的高贵以及精神世界的富足;越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。随着沧桑的累积,我们也会慢慢懂得:成功的路,其实并不拥挤,因为能够坚持到底的人实在太少;所有优秀的人,其实就是活得很努力的人,所谓的胜利,其实最后就是自身价值观的胜利。人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;生活,只有将尘世况味种
17、种尝遍,才能熬出头。这世间,从来没有最好,只有更好。每天,总想要努力醒得比太阳还早,因为总觉得世间万物,太阳是最能赐人力量和能量的。每当面对喷薄的日出,心中的太阳随之冉冉腾起,生命之火熊熊燃烧,生活的热情就会光芒四射。我真的难以想象,那些从来不早起的人,一生到底能够看到几回日升?那些从来没有良好习惯的人,活到最后到底该是多么的遗憾与愧疚?曾国藩说:早晨不起,误一天的事;幼时不学,误一生的事。尼采也说:每一个不曾起舞的日子,都是对生命的辜负。光阴易逝,岂容我待?越是努力的人,越是没有时间抱怨,越是没有工夫颓丧。每当走在黎明的曙光里,看到那些兢兢业业清洁城市的“美容师”,我就会由衷地欣赏并在心底赞
18、叹他们,因为他们活得很努力很认真。每当看见那些奔跑在朝霞绚烂里的晨练者,我就会从心里为他们竖起大拇指,因为他们给自己力量的同时,也赠予他人能量。我总觉得:你可以不优秀,但你必须有认真的态度;你可以不成功,但你必须努力。这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。我也始终认为:一个活得很努力的人,自带光芒万丈;一个人认真的样子,比任何时候都要美好;一个能够自律自控的人,他的人生也就成功了大半。世间每一种的好,从来都只为懂得努力的人盛装而来。有时候,我真的感觉,人生的另一个名字应该叫做努力,努力了就会无悔,努力了就会无愧;生活的另一种说法应该叫做煎熬,熬过了漫漫黑夜,天就亮了,熬过了萧萧冬
19、日,春天就来了。人生不易,越努力越幸运;余生不长,越珍惜越精彩。人生,是一本太仓促的书,越认真越深刻;生命,是一条无名的河,越往前越深邃。愿你不要为已逝的年华叹息,不要为前路的茫茫而裹足不前愿你相信所有的坚持总能奏响黎明的号角,所有的努力总能孕育硕果的盛驾光临。愿你坚信越是成功的人越是不允许自己颓废散漫,越是优秀的人越是努力生活中很多时候,我们遇到一些复杂的情况,会很容易被眼前的障碍所蒙蔽,找不到解决问题的方法。这时候,如果能从当前的环境脱离出来,从一个新角度去解决问题,也许就会柳暗花明。一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。苦思良久后终得一法:每次
20、出门前把WiFi修改成无密码,然后放心出门每次回来都能看到十几个人捧着手机蹲在自家门口,从此无忧。护院,未必一定要养狗换个角度想问题,结果大不同。一位大爷到菜市场买菜,挑了3个西红柿到到秤盘,摊主秤了下:“一斤半3块7。”大爷:“做汤不用那么多。”去掉了最大的西红柿。摊主:“一斤二两,3块。”正当身边人想提醒大爷注意秤时,大爷从容的掏出了七毛钱,拿起刚刚去掉的那个大的西红柿,潇洒地换种算法,独辟蹊径,你会发现解决问题的另一个方法。生活中,我们特别容易陷入非A即B的思维死角,但其实,遭遇两难困境时换个角度思考,也许就会明白:路的旁边还有路。一个鱼塘新开张,钓费100块。钓了一整天没钓到鱼,老板说
21、凡是没钓到的就送一只鸡。很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!觉得老板很够意思。后来,钓鱼场看门大爷告诉大家,老板本来就是个养鸡专业户,这鱼塘本来就没鱼。巧妙的去库存,还让顾客心甘情愿买单。新时代,做营销,必须打破传统思维。孩子不愿意做爸爸留的课外作业,于是爸爸灵机一动说:儿子,我来做作业,你来检查如何?孩子高兴的答应了,并且把爸爸的“作业”认真的检查了一遍,还列出算式给爸爸讲解了一遍不过他可能怎么也不明白为什么爸爸所有作业都做错了。巧妙转换角色,后退一步,有时候是另一种前进。一个博士群里有人提问:一滴水从很高很高的地方自由落体下来,砸到人会不会砸伤?或砸死?群里一下就热闹起来,各种公式,各种假设,各种阻力,重力,加速度的计算,足足讨论了近一个小时 后来,一个不小心进错群的人默默问了一句:你们没有淋过雨吗 人们常常容易被日常思维所禁锢,而忘却了最简单也是最直接的路有两个年轻人,大学毕业后一起到广州闯天下。结束结束