2021年贵州省贵阳市数学中考真题含答案解析(含答案).pdf

上传人:赵** 文档编号:60848451 上传时间:2022-11-18 格式:PDF 页数:19 大小:1.59MB
返回 下载 相关 举报
2021年贵州省贵阳市数学中考真题含答案解析(含答案).pdf_第1页
第1页 / 共19页
2021年贵州省贵阳市数学中考真题含答案解析(含答案).pdf_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2021年贵州省贵阳市数学中考真题含答案解析(含答案).pdf》由会员分享,可在线阅读,更多相关《2021年贵州省贵阳市数学中考真题含答案解析(含答案).pdf(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、贵州省贵阳市贵州省贵阳市 20212021 年中考数学试卷年中考数学试卷一、单项选择题(共一、单项选择题(共 1010 小题小题,每小题每小题 3 3 分分,共共 3030 分)分)1(3 分)(2014贵阳)2 的相反数是()ABC2D2考点:相反数分析:根据相反数的概念作答即可解答:解:根据相反数的定义可知:2 的相反数是2故选:D点评:此题主要考查了相反数的定义:只有符号相反的两个数互为相反数0 的相反数是其本身2(3 分)(2014贵阳)如图,直线 a,b 相交于点 O,若1 等于 50,则2 等于()A50B40C140D130考点:对顶角、邻补角分析:根据对顶角相等即可求解解答:解

2、:2 与1 是对顶角,2=1=50故答案选 A点评:本题考查了对顶角的识别与对顶角的性质,牢固掌握对顶角相等的性质是解题的关键3(3 分)(2014贵阳)贵阳市中小学幼儿园“爱心助残工程”第九届助残活动于 2021 年 5月在贵阳市盲聋哑学校举行,活动当天,贵阳市盲聋哑学校获得捐赠的善款约为 150000元150000 这个数用科学记数法表示为()A1.5104B1.5105C1.5106D15104考点:科学记数法表示较大的数分析:科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数

3、相同 当原数绝对值1 时,n 是正数。当原数的绝对值1 时,n 是负数解答:解:150000=1.5105,故选:B点评:此题考查科学记数法的表示方法 科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值14(3 分)(2014贵阳)一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A中B功C考D祝考点:专题:正方体相对两个面上的文字分析:利用正方体及其表面展开图的特点解题解答:解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与

4、面“祝”相对,“中”与面“考”相对故选 B点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题5(3 分)(2014贵阳)在班级组织的“贵阳市创建国家环保模范城市”知识竞赛中,小悦所在小组 8 名同学的成绩分别为(单位:分)95,94,94,98,94,90,94,90,则这 8 名同学成绩的众数是()A98 分B95 分C94 分D90 分考点:众数分析:根据众数的定义先找出这组数据中出现次数最多的数,即可得出答案解答:解:94 出现了 4 次,出现的次数最多,则这 8 名同学成绩的众数是 94 分。故选 C点评:此题考查了众数,掌握众数的定义是本题的

5、关键。众数是一组数据中出现次数最多的数6(3 分)(2014贵阳)在 RtABC 中,C=90,AC=12,BC=5,则 sinA 的值为()ABCD考点:锐角三角函数的定义。勾股定理分析:首先画出图形,进而求出 AB 的长,再利用锐角三角函数求出即可解答:解:如图所示:C=90,AC=12,BC=5,AB=则 sinA=故选:D=13,2点评:此题主要考查了锐角三角函数关系以及勾股定理等知识,正确记忆锐角三角函数关系是解题关键7(3 分)(2014贵阳)如图,在方格纸中,ABC 和EPD 的顶点均在格点上,要使ABCEPD,则点 P 所在的格点为()AP1BP2CP3DP4考点:相似三角形的

6、判定专题:网格型分析:由于BAC=PED=90,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断ABCEPD,然后利用 DE=4,所以 EP=6,则易得点 P 落在P3处解答:解:BAC=PED,而=,=时,ABCEPD,DE=4,EP=6,点 P 落在 P3处故选 C点评:本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似38(3 分)(2014贵阳)有 5 张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8 若将这 5 张牌背面朝上洗匀后,从中任意抽取 1 张,那么这张牌正面上的数字为偶数的概率是()ABCD考点:概率公式分

7、析:由有 5 张大小、背面都相同的扑克牌,正面上的数字分别是 4,5,6,7,8其中偶数为:4,6,8,直接利用概率公式求解即可求得答案解答:解:有 5 张大小、背面都相同的扑克牌,正面上的数字分别是 4,5,6,7,8其中偶数为:4,6,8,从中任意抽取 1 张,那么这张牌正面上的数字为偶数的概率是:故选 B点评:此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比9(3 分)(2014贵阳)如图,三棱柱的体积为 10,其侧棱 AB 上有一个点 P 从点 A 开始运动到点 B 停止,过 P 点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为 x、y,则下列能表示

8、 y 与 x 之间函数关系的大致图象是()ABCD考点:动点问题的函数图象分析:根据截成的两个部分的体积之和等于三棱柱的体积列式表示出 y 与 x 的函数关系式,再根据一次函数的图象解答解答:解:过 P 点作与底面平行的平面将这个三棱柱截成两个部分的体积分别为 x、y,x+y=10,y=x+10(0 x10),纵观各选项,只有 A 选项图象符合故选 A点评:本题考查了动点问题的函数图象,比较简单,理解分成两个部分的体积的和等于三棱柱的体积是解题的关键410(3 分)(2014贵阳)如图,A 点的坐标为(4,0),直线 y=连接 AC,如果ACD=90,则 n 的值为()x+n 与坐标轴交于点

9、B,C,A2BCD考点:一次函数图象上点的坐标特征。解直角三角形分析:由直线 y=x+n 与坐标轴交于点 B,C,得 B 点的坐标为(n,0),C 点的坐标为(0,n),由 A 点的坐标为(4,0),ACD=90,用勾股定理列出方程求出 n 的值解答:解:直线 y=x+n 与坐标轴交于点 B,C,B 点的坐标为(n,0),C 点的坐标为(0,n),A 点的坐标为(4,0),ACD=90,AB2=AC2+BC2,AC2=AO2+OC2,BC2=0B2+0C2,AB2=AO2+OC2+0B2+0C2,即(解得 n=n+4)2=42+n2+(,n=0(舍去),n)2+n2故选:C点评:本题主要考查了

10、一次函数图象上点的坐标特征及解直角三角形,解题的关键是利用勾股定理列出方程求 n二、填空题(每小题二、填空题(每小题 4 4 分分,满分满分 2020 分)分)11(4 分)(2014贵阳)若 m+n=0,则 2m+2n+1=1考点:代数式求值分析:把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解解答:解:m+n=0,2m+2n+1=2(m+n)+1,=20+1,=0+1,=1故答案为:1点评:本题考查了代数式求值,整体思想的利用是解题的关键512(4 分)(2014贵阳)“六一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共 1000 个,小洁将纸箱里面的球

11、搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中。搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中。多次重复上述过程后,发现摸到红球的频率逐渐稳定在 0.2,由此可以估计纸箱内红球的个数约是200个考点:利用频率估计概率分析:因为摸到黑球的频率在 0.7 附近波动,所以摸出黑球的概率为 0.7,再设出黑球的个数,根据概率公式列方程解答即可解答:解:设红球的个数为 x,红球的频率在 0.2 附近波动,摸出红球的概率为 0.2,即=0.2,解得 x=200所以可以估计红球的个数为 200故答案为:200点评:本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这

12、个常数就叫做事件概率的估计值 关键是根据黑球的频率得到相应的等量关系13(4 分)(2014贵阳)如图,AB 是O 的直径,点 D 在O 上,BOD=130,ACOD 交O于点 C,连接 BC,则B=40度考点:圆周角定理。平行线的性质分析:先求出AOD,利用平行线的性质得出A,再由圆周角定理求出B 的度数即可解答:解:BOD=130,AOD=50,又ACOD,A=AOD=50,AB 是O 的直径,C=90,B=9050=40故答案为:40点评:本题考查了圆周角定理,熟练掌握圆周角定理的内容是解题关键614(4 分)(2014贵阳)若反比例函数的图象在其每个象限内,y 随 x 的增大而增大,则

13、k 的值可以是1(答案不唯一)(写出一个 k 的值)考点:反比例函数的性质专题:开放型分析:根据它在每个象限内,y 随 x 增大而增大判断出 k 的符号,选取合适的 k 的值即可解答:解:它在每个象限内,y 随 x 增大而增大,k0,符合条件的 k 的值可以是1,故答案为:1(答案不唯一)点评:本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一,只要写出的反比例函数的解析式符合条件即可15(4 分)(2014贵阳)如图,在 RtABC 中,BAC=90,AB=AC=16cm,AD 为 BC 边上的高动点 P 从点 A 出发,沿 AD 方向以cm/s 的速度向点 D 运动设ABP 的面积

14、为 S1,矩形 PDFE 的面积为 S2,运动时间为 t 秒(0t8),则 t=6秒时,S1=2S2考点:一元二次方程的应用。等腰直角三角形。矩形的性质专题:几何动点问题分析:利用三角形的面积公式以及矩形的面积公式,表示出 S1和 S2,然后根据 S1=2S2,即可列方程求解解答:解:RtABC 中,BAC=90,AB=AC=16cm,AD 为 BC 边上的高,AD=BD=CD=8cm,又AP=t,则 S1=APBD=8t=8t,PD=8PEBC,APEADC,t,PE=AP=t,S2=PDPE=(8t)t,S1=2S2,8t=2(8t)t,解得:t=6故答案是:6点评:本题考查了一元二次方程

15、的应用,以及等腰直角三角形的性质,正确表示出 S1和 S2是关键7三、解答题(本题三、解答题(本题 8 8 分)分)16(8 分)(2014贵阳)化简:值考点:分式的化简求值专题:计算题分析:原式约分得到最简结果,将 x=0 代入计算即可求出值解答:解:原式=,当 x=0 时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键17(10 分)(2014贵阳)2021 年巴西世界杯足球赛正在如火如荼的进行,小明和喜爱足球的伙伴们一起预测“巴西队”能否获得本届杯赛的冠军,他们分别在 3 月、4 月、5 月、6 月进行了四次预测,并且每次参加预测的人数相同,小明根据四次预测结果绘制

16、成如下两幅不完整的统计图请你根据图中提供的信息解答下列问题:,然后选择一个使分式有意义的数代入求(1)每次有50人参加预测。(2)计算 6 月份预测“巴西队”夺冠的人数。(3)补全条形统计图和折线统计图考点:条形统计图。扇形统计图分析:(1)用 4 月支持人数除以支持率 30%就是每次参加预测的人数(2)用参加预测的人数乘 6 月份的支持率 60%就是 6 月份预测“巴西队”夺冠的人数,(3)求出 4 月份支持率为 40%,6 月份预测“巴西队”夺冠的人数 30 人,再补全条形统计图和折线统计图解答:解:(1)每次参加预测的人数为:1530%=50 人,故答案为:50(2)6 月份预测“巴西队

17、”夺冠的人数为:5060%=30 人(3)4 月份支持率为:2050=40%,6 月份预测“巴西队”夺冠的人数 30 人,如图,8点评:本题考查读条形图的能力和利用统计图获取信息的能力。利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题18(10 分)(2014贵阳)如图,在 RtABC 中,ACB=90,D、E 分别为 AB,AC 边上的中点,连接 DE,将ADE 绕点 E 旋转 180得到CFE,连接 AF,AC(1)求证:四边形 ADCF 是菱形。(2)若 BC=8,AC=6,求四边形 ABCF 的周长考点:菱形的判定与性质。旋转的性质分析:(1)根据旋转

18、可得 AE=CE,DE=EF,可判定四边形 ADCF 是平行四边形,然后证明DFAC,可得四边形 ADCF 是菱形。(2)首先利用勾股定理可得 AB 长,再根据中点定义可得 AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案解答:(1)证明:将ADE 绕点 E 旋转 180得到CFE,AE=CE,DE=EF,四边形 ADCF 是平行四边形,D、E 分别为 AB,AC 边上的中点,DE 是ABC 的中位线,DEBC,ACB=90,AED=90,DFAC,四边形 ADCF 是菱形。(2)解:在 RtABC 中,BC=8,AC=6,AB=10,D 是 AB 边上的中点,9AD=5,四边形

19、 ADCF 是菱形,AF=FC=AD=5,四边形 ABCF 的周长为 8+10+5+5=28点评:此题主要考查了菱形的判定与性质,关键是掌握菱形四边相等,对角线互相垂直的平行四边形是菱形19(8 分)(2014贵阳)2021 年 12 月 26 日,西南真正意义上的第一条高铁贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为 1800km,高铁开通后,高铁列车的行驶约为 860km,运行时间比特快列车所用的时间减少了 16h 若高铁列车的平均速度是特快列车平均速度的 2.5 倍,求特快列车的平均速度考点:分式方程的应用分析:首先设特快列车的平均速度为 xkm/h,则高铁列车的平

20、均速度为 2.5xkm/h,根据题意可得等量关系:乘特快列车的行程约为 1800km 的时间=高铁列车的行驶约为 860km 的时间+16 小时,根据等量关系,列出方程,解方程即可解答:解:设特快列车的平均速度为 xkm/h,由题意得:=+16,解得:x=91,经检验:x=91 是分式方程的解答:特快列车的平均速度为 91km/h点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验20(10 分)(2014贵阳)如图,为了知道空中一静止的广告气球 A 的高度,小宇在 B 处测得气球 A 的仰角为 18,他向前走了 20m 到达 C 处后,再次测

21、得气球 A 的仰角为 45,已知小宇的眼睛距地面 1.6m,求此时气球 A 距地面的高度(结果精确到 0.1m)考点:解直角三角形的应用-仰角俯角问题分析:作 ADBC 于点 D,交 FG 于点 E,则AGE 是等腰直角三角形,设 AE 长是 xm,在直角AFE 中,利用三角函数即可列方程求得 AE 的长,则 AD 即可求得解答:解:作 ADBC 于点 D,交 FG 于点 EAGE=45,AE=CE,在直角AFE 中,设 AE 长是 xm,则 tanAFE=解得:x9.6,即 tan18=,10则 ED=FB1.6AD=9.6+1.6=11.2m答:此时气球 A 距地面的高度是 11.2m点评

22、:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形21(10 分)(2014贵阳)如图,一条直线上有两只蚂蚁,甲蚂蚁在点 A 处,乙蚂蚁在点 B 处,假设两只蚂蚁同时出发,爬行方向只能沿直线 AB 在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快(1)甲蚂蚁选择“向左”爬行的概率为。(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率考点:列表法与树状图法分析:(1)由爬行方向只能沿直线 AB 在“向左”或“向右”中随机选择,直接利用概率公式求解即可求得答案。(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两只蚂蚁开始爬行后会“触

23、碰到”的情况,再利用概率公式即可求得答案解答:解:(1)爬行方向只能沿直线 AB 在“向左”或“向右”中随机选择,甲蚂蚁选择“向左”爬行的概率为:。故答案为:。(2)画树状图得:共有 4 种情况,两只蚂蚁开始爬行后会“触碰到”的 2 种情况,两只蚂蚁开始爬行后会“触碰到”的概率为:=点评:本题考查的是用列表法或画树状图法求概率 列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比1122(10 分)(2014贵阳)如图,在平面直角坐标系中,点 O 为坐标系原点,矩形 OABC 的边

24、OA,OC 分别在轴和轴上,其中 OA=6,OC=3已知反比例函数 y=(x0)的图象经过 BC 边上的中点 D,交 AB 于点 E(1)k 的值为9。(2)猜想OCD 的面积与OBE 的面积之间的关系,请说明理由考点:待定系数法求反比例函数解析式。反比例函数系数k 的几何意义。反比例函数图象上点的坐标特征。矩形的性质分析:(1)根据题意得出点 D 的坐标,从而可得出 k 的值。(2)根据三角形的面积公式和点 D,E 在函数的图象上,可得出 SOCD=SOAE,再由点D 为 BC 的中点,可得出 SOCD=SOBD,即可得出结论解答:解:OA=6,OC=3,点 D 为 BC 的中点,D(3,3

25、)k=33=9,故答案为 9。(2)SOCD=SOBE,理由是:点 D,E 在函数的图象上,SOCD=SOAE=,点 D 为 BC 的中点,SOCD=SOBD,即 SOBE=,SOCD=SOBE点评:本题考查了用待定系数法求反比例函数的解析式、反比例函数系数k 的几何意义、反比例函数图象上点的特征以及矩形的性质,是一道综合题,难度中等1223(10 分)(2014贵阳)如图,PA,PB 分别与O 相切于点 A,B,APB=60,连接 AO,BO(1)所对的圆心角AOB=120。(2)求证:PA=PB。(3)若 OA=3,求阴影部分的面积考点:切线的性质。扇形面积的计算分析:(1)根据切线的性质

26、可以证得OAP=OBP=90,根据四边形内角和定理求解。(2)证明直角OAP直角OBP,根据全等三角形的对应边相等,即可证得。(3)首先求得OPA 的面积,即求得四边形 OAPB 的面积,然后求得扇形 OAB 的面积,即可求得阴影部分的面积解答:(1)解:PA,PB 分别与O 相切于点 A,B,OAP=OBP=90,AOB=180909060=120。(2)证明:连接 OP在 RtOAP 和 RtOBP 中,RtOAPRtOBP,PA=PB。(3)解:RtOAPRtOBP,OPA=OPB=APB=30,在 RtOAP 中,OA=3,AP=3,=,=93SOPA=33S阴影=2点评:本题考查了圆

27、的切线性质,及解直角三角形的知识 运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题1324(12 分)(2014贵阳)如图,将一副直角三角形拼放在一起得到四边形 ABCD,其中BAC=45,ACD=30,点 E 为 CD 边上的中点,连接 AE,将ADE 沿 AE 所在直线翻折得到ADE,DE 交 AC 于 F 点若 AB=6cm(1)AE 的长为4cm。(2)试在线段 AC 上确定一点 P,使得 DP+EP 的值最小,并求出这个最小值。(3)求点 D到 BC 的距离考点:几何变换综合题分析:(1)首先利用勾股定理得出 AC 的长,进而求出 CD

28、 的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案。(2)首先得出ADE 为等边三角形,进而求出点 E,D关于直线 AC 对称,连接 DD交AC 于点 P,此时 DP+EP 值为最小,进而得出答案。(3)连接 CD,BD,过点 D作 DGBC 于点 G,进而得出ABDCBD(SSS),则DBG=45,DG=GB,进而利用勾股定理求出点 D到 BC 边的距离解答:解:(1)BAC=45,B=90,AB=BC=6cm,AC=12cm,ACD=30,DAC=90,AC=12cm,CD=ACcos30=12=12=8(cm),点 E 为 CD 边上的中点,AE=DC=4cm故答案为:4。(2

29、)RtADC 中,ACD=30,ADC=60,E 为 CD 边上的中点,DE=AE,ADE 为等边三角形,将ADE 沿 AE 所在直线翻折得ADE,ADE 为等边三角形,AED=60,EAC=DACEAD=30,EFA=90,即 AC 所在的直线垂直平分线段 ED,点 E,D关于直线 AC 对称,连接 DD交 AC 于点 P,此时 DP+EP 值为最小,且 DP+EP=DD,14ADE 是等边三角形,AD=AE=4DD=2AD=26=12,即 DP+EP 最小值为 12cm。,(3)连接 CD,BD,过点 D作 DGBC 于点 G,AC 垂直平分线 ED,AE=AD,CE=CD,AE=EC,A

30、D=CD=4在ABD和CBD中,ABDCBD(SSS),DBG=45,DG=GB,设 DG 长为 xcm,则 CG 长为(6在 RtGDC 中x)cm,x2+(6x)2=(4)2,解得:x1=3,x2=3+(不合题意舍去),点 D到 BC 边的距离为(3)cm点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点 E,D关于直线 AC 对称是解题关键1525(12 分)(2014 贵阳)如图,经过点 A(0,6)的抛物线 y=x2+bx+c 与 x 轴相交于 B(2,0),C 两点(1)求此抛物线的函数关系式和顶点 D 的坐标。

31、(2)将(1)中求得的抛物线向左平移 1 个单位长度,再向上平移 m(m0)个单位长度得到新抛物线 y1,若新抛物线 y1的顶点 P 在ABC 内,求 m 的取值范围。(3)在(2)的结论下,新抛物线 y1上是否存在点 Q,使得QAB 是以 AB 为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的 m 的取值范围考点:二次函数综合题分析:(1)根据已知点的坐标代入已知的函数的解析式即可利用待定系数法确定二次函数的解析式。(2)首先根据平移确定平移后的函数的解析式,然后确定点 P 的坐标,然后求得点 C的坐标,从而利用待定系数法确定直线 AC 的解析式,然后确定 m 的取值范围即可

32、。(3)求出AB 中点,过此点且垂直于 AB 的直线在 x=1 的交点应该为顶点 P 的临界点,顶点 P 继续向上移动,不存在 Q 点,向下存在两个点 P解答:解:(1)将 A(0,6),B(2,0)代入 y=x2+bx+c,得:,解得:,y=x22x6,顶点坐标为(2,8)。(2)将(1)中求得的抛物线向左平移 1 个单位长度,再向上平移 m(m0)个单位长度得到新抛物线 y1=(x2+1)28+m,P(1,8+m),在抛物线 y=x22x6 中易得 C(6,0),直线 AC 为 y2=x6,当 x=1 时,y2=5,58+m0,解得:3m8。(3)A(0,6),B(2,0),16线段 AB

33、 的中点坐标为(1,3),直线 AB 的解析式为 y=3x6,过 AB 的中点且与 AB 垂直的直线的解析式为:y=x,直线 y=x与 x=1 的交点坐标为(1,),此时的点 P 的坐标为(1,),此时向上平移了 8=当 3m当 m=当个单位,时,存在两个 Q 点,可作出两个等腰三角形。时,存在一个点 Q,可作出一个等腰三角形。m8 时,Q 点不存在,不能作出等腰三角形点评:本题考查了二次函数的综合知识,题目中还渗透了分类讨论的数学思想,这也是中考中常常出现的重要的数学思想,应加强此类题目的训练1723.在平面直角坐标系xOy中,二次函数y mx(m3)x3(m 0)的图象与x轴交于2A、B两

34、点(点A在点B的左侧),与y轴交于点C。(1)求点A的坐标。(2)当ABC 45时,求m的值。(3)已知一次函数y kxb,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂 直 于x轴 的 直 线 交 这 个 一 次 函 数 的 图 象 于 点M,交 二 次 函 数y mx2(m3)x3(m 0)的图象于N。若只有当2 n 2时,点M位于点N的上方,求这个一次函数的解析式。24.在ABCD中,BAD的平分线交直线BC于点E,交直线DC于点F。(1)在图 1 中证明CE CF。(2)若ABC 90,G是EF的中点(如图 2),直接写出BDG的度数。(3)若ABC 120,FGCE,F

35、G CE,分别连结DB、DG(如图 3),求BDG的度数。A AA AB BF FD DD DE EC CE EB BG GC CF FA AD DB BE EG GC CF F1825.如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形图形C C(注:不含AB线段)。已知A(1,0),B(1,0),AEBF,且半圆与y轴的交点D在射线AE的反向延长线上。(1)求两条射线AE,BF所在直线的距离。(2)当一次函数y xb的图象与图形图形C C恰好只有一个公共点时,写出b的取值范围。当一次函数y xb的图象与图形图形C C恰好只有两个公共点时,写出b的取值范围。(3)已知AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形图形C C上,且不都在两条射线上,求点M的横坐标x的取值范围。26(10 分)在等腰ABC 中,ABAC5,BC6动点M、N 分别在 AB、AC 上(M 不与 A、B重合),且 MNBC将AMN 沿 MN 所在的直线折叠,使点 A 的对应点为 P(1)当 MN 为何值时,点 P 恰好落在 BC 上?(2)设 MNx,PMN 与ABC 重叠部分的面积为 y,试写出 y 与 x 的函数关系式 当 x 为何值时,y 的值最大?最大值是多少?AMNBPC19

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁