《北师大七年级上数学教案.pdf》由会员分享,可在线阅读,更多相关《北师大七年级上数学教案.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大七年级上数学教案北师大七年级上数学教案北师大七年级上数学教案北师大七年级上数学教案 1 1教学目的:1、使学生初步到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识;2、使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。教学分析:重点:加强数学意识;难点:数学能力的培养。教学过程:一、与数学交朋友1、数学伴我们成长人来到世界上的第一天就遇到数学,数学将哺育着你的成长。数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。从生活的一系列人生活动中,我们会逐渐意识到这一切的一切都和数、数的运算、数的比较、图形的大小、图形的形状、图形的位置有关。另外,数
2、学知识开阔了你的视野,改变了你的思维方式,使我们变得更聪明。2、人类离不开数学自然界中的数学不胜枚举。如:蜜蜂营造的峰房;电子计算机等等。从生活中的常见的天气预报图,从经济生活中的股票指数,到某些图案的组成:3、人人都能学会数学数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学。学好数学要对数学有兴趣,要有刻苦钻研的精神,要善于发现和提出问题,要善于独立思考。学好数学还要关于把数学应用于实际问题。二、激发训练三、作业巩固北师大七年级上数学教案北师大七年级上数学教案 2 2教学目的:1、使学生对数学产生一定的兴趣,获得学好数学的自信心;2、使学生学会与他人合作,养成独立思考与
3、合作交流的习惯;3、使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。教学分析:重点:如何培养学生对数学的兴趣;难点:学生对数学的感性认识。教学过程:一、让我们来做数学:1、跟我学要正确地解数学题,需要掌握数学题的方法。例:如图所示的的方格图案中多少个正方形?2、试试看例:在如图中,填入1、2、3、4、5、6、7、8、9 这 9 个数,使每行、每列及对角线上各数的和都为 15。例:在上图中,已经填入了 1 至 16 这 16 个数中的一些数,请将剩下的数填入空格中,使每行、每列及对角线上各数的和都为 34。例:红旗小学学生张勇和他的爸爸、妈妈准备在国庆节外出旅游。春光旅行
4、社的收费标准为:大人全价,小孩半价;而华夏旅行社不管大人小孩,一律八折。这两家旅行社的基本价都一样(每人 100 元),你认为应该去哪家旅行社较为合算?二、激发训练三、知识小结:通过以上两节的学习,我们要一定喜欢上它,并希望它天天陪伴你。在以后的学习中,我们将在小学的基础上学到更多新的知识。四、作业巩固北师大七年级上数学教案北师大七年级上数学教案 3 3教学目标:1、知识与技能(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。(2)理解有理数的意义,体会有理数应用的广泛性。2、过程与方法通过实例的引入,认识到负数的产生是*于生产和生活,会用正、负数表示具有相
5、反意义的量,能按要求对有理数进行分类。重点、难点:1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。2、难点:对负数的理解以及正确地对有理数进行分类。教学过程:一、创设情景,导入新课大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、,我们用到整数 1,2,为了表示“没有人”、“没有羊”、,我们要用到 0.但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。二、合作交流,解读探究1
6、、某市某一天的温度是零上5,最低温度是零下5。要表示这两个温度,如果只用小学学过的数,都记作 5,就不能把它们区别清楚。它们是具有相反意义的两个量。现实生活中,像这样的相反意义的量还有很多例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。“运进”和“运出”,其意义是相反的。同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充。教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色 5表示零下 5,黑色 5表示零上 5;乙同学说,在数字前面加不同符号来区分,比如,5表示零上 5,5
7、表示零下 5.其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。现在,数学中采用符号来区分,规定零上 5记作+5(读作正 5)或 5,把零下 5记作-5(读作负 5)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面 8848 米,记作+8848 米;低于海平面 155 米,记作-155 米;教师讲解:什么叫做正数?什么叫做负数?强调,数0 既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不
8、是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。2、给出新的整数、分数概念引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。3、给出有理数概念整数和分数统称为有理数。4、有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充。教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。北师大七年级上数学教案