三重积分习题课教学内容.ppt

上传人:豆**** 文档编号:60603979 上传时间:2022-11-17 格式:PPT 页数:41 大小:1.26MB
返回 下载 相关 举报
三重积分习题课教学内容.ppt_第1页
第1页 / 共41页
三重积分习题课教学内容.ppt_第2页
第2页 / 共41页
点击查看更多>>
资源描述

《三重积分习题课教学内容.ppt》由会员分享,可在线阅读,更多相关《三重积分习题课教学内容.ppt(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、三重积分习题课三重积分习题课其中其中 为球面为球面x2+y2+z2=1所围成的区域所围成的区域.例例例例 计算三重积分计算三重积分其中其中:0 x 1,0 y 1,0 z 1解解错解错解解解正确做法正确做法分析分析 积分区域和被积函数都具有轮换对称性积分区域和被积函数都具有轮换对称性xzyoxyo1.三重积分习题课三重积分习题课重点:重点:1.计算;计算;2.应用应用 上边界曲面(上边界曲面(上顶上顶)下边界曲面(下边界曲面(下底下底)xOy 坐标面上的坐标面上的投影区域投影区域一、利用直角坐标系计算三重积分一、利用直角坐标系计算三重积分“先一后二先一后二”(一)先投影,再确定上、下面(一)先

2、投影,再确定上、下面 x0z yc1c2.“先二后一先二后一”zDz(二)(二)截面法截面法c1,c2:向向 z 轴的投影区间轴的投影区间 Dz:过过 z c1,c2且垂于且垂于z轴轴的平面截的平面截 得到的截面得到的截面 0 xz yM(x,y,z)M(r,z)zrP(x,y,0)xyz柱面坐标柱面坐标 M(x,y,z)M(r,z)z=z.二、利用柱面坐标计算三重积分二、利用柱面坐标计算三重积分xz y0 drrrd d z底面积底面积 :r drd 元素区域由六个坐标面围成:元素区域由六个坐标面围成:半平面半平面 及及+d ;半径为半径为 r 及及 r+dr 的圆柱面的圆柱面;平面平面 z

3、及及 z+dz;dzdV=.柱面坐标下的体积元素柱面坐标下的体积元素.dV0 xz yM(x,y,z)M(r,)r Pyxz.球面坐标球面坐标 三、利用球面坐标计算三重积分三、利用球面坐标计算三重积分r drd xz y0 d rd 元素区域由六个坐标面围成:元素区域由六个坐标面围成:rsin d 球面坐标下的体积元素球面坐标下的体积元素.半平面半平面 及及+d ;半径为半径为r及及r+dr的球面;的球面;圆锥面圆锥面 及及+d r 2 sin drd d dVdV=(一一)平面区域的面积平面区域的面积设有平面区域设有平面区域D,(二二)体积体积 设曲面方程为设曲面方程为则则D上的曲顶柱体体积

4、为上的曲顶柱体体积为:则其面积为则其面积为:占有占有空间有界域空间有界域 的立体的体积为的立体的体积为:重积分在几何上的应用重积分在几何上的应用曲面曲面S的面积的面积元素元素曲面曲面S的面积的面积公式公式(三三)曲面的面积曲面的面积(1)(1)平面薄片的质心平面薄片的质心三、重积分在物理上的应用三、重积分在物理上的应用(一一)质质(重重)心心(2)(2)空间物体的重心空间物体的重心 设物体占有空间域设物体占有空间域 ,有连续密度函数有连续密度函数重心重心 (1)(1)平面薄片的转动惯量平面薄片的转动惯量(二二)转动惯量转动惯量(2)(2)空间物体的转动惯量空间物体的转动惯量则则转动惯量转动惯量

5、为为设物体占有空间域设物体占有空间域 ,有连续密度函数有连续密度函数设物体占有空间区域设物体占有空间区域V,体密度为体密度为区域区域 V 之外有一质量为之外有一质量为 m 的质点的质点 A(a,b,c),求物体求物体 V 对质点对质点 A 的引力的引力.(三三)引力引力于是引力于是引力F在三个坐标方向上的分量为在三个坐标方向上的分量为其中其中G为万有引力系数,为万有引力系数,例例1 1 解解利用球面坐标利用球面坐标例题例题(画图画图)z 0 xy1化为球系下的方程化为球系下的方程化为球系下的方程化为球系下的方程r=2 cos.M.r z=0y=0 x=00y x 画图画图x0z y11DxyD

6、xy:x=0,y=0,x+2y=1 围成围成1.例例2 2:x+2y+z=1DxyI =x0z y11Dyz.例例3 3:x+y+z=1I =解解 直接积分困难,考虑改变积分次序直接积分困难,考虑改变积分次序例例4 4 解解例例5 5 解解例例6 6 解解0y xDxy解解例例7 7法法1 先二后一先二后一法法2解解例例8 8 计计算算其中其中 是由抛物面是由抛物面 和球面和球面 所所围围成的空成的空间闭间闭区域区域.ayxzo例例9 9xyzoDS=D:.例例1010.例例1010 解解S=z=0yxzo球面坐标球面坐标a.用哪种坐标?用哪种坐标?r=a.例例1111例例1212 计算极限计算极限其中其中具有连续导数具有连续导数,且且解解:测测 验验 题题结束结束

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁