《最新常微分方程数值解59514PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新常微分方程数值解59514PPT课件.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、常微分方程数值解常微分方程数值解5951459514求解过程顺着节点排列次序一步步向前推进,即按递求解过程顺着节点排列次序一步步向前推进,即按递推公式由已知的推公式由已知的y0,y1,yi,求出求出yi+1。yox0y(x)p0 x1p1p2x2xxiPi+1Pixi+1在在假假设设 yi=y(xi),即即第第 i 步步计计算算是是精精确确的的前前提提下下,考考虑虑的截断误差的截断误差 Ri=y(xi+1)yi+1 称为称为局部截断误差局部截断误差若若某某算算法法的的局局部部截截断断误误差差为为O(hp+1),则则称称该该算算法法有有p 阶精度。阶精度。可见可见:(1)每一步都会产生误差每一步
2、都会产生误差.(2)与前面与前面每一步计算产生的误差都每一步计算产生的误差都有关,具有整体性,所以有关,具有整体性,所以分析和确定它是很复杂的。分析和确定它是很复杂的。欧拉公式求解基本思路欧拉公式求解基本思路:2 龙格龙格-库塔法库塔法/*Runge-KuttaMethod*/建立高精度的单步递推格式。建立高精度的单步递推格式。单步递推法的单步递推法的基本思想基本思想是从是从(xi,yi)点出发,以点出发,以某一斜某一斜率率沿直线达到沿直线达到(xi+1,yi+1)点。欧拉法及其各种变形所能点。欧拉法及其各种变形所能达到的最高精度为达到的最高精度为2阶阶。考察改进的欧拉法,可以将其改写为:考察
3、改进的欧拉法,可以将其改写为:斜率斜率一定取一定取K1 K2 的的平均值平均值吗?吗?步长一定是一个步长一定是一个h 吗吗?首先希望能确定系数首先希望能确定系数 1、2、p,使得到的算法格式有,使得到的算法格式有2阶阶精度,即在精度,即在 的前提假设下,使得的前提假设下,使得 Step 1:将将 K2 在在(xi,yi)点作点作 Taylor 展开展开将改进欧拉法推广为:将改进欧拉法推广为:),(),(12122111phKyphxfKyxfKKKhyyiiiiii+=+=+Step 2:将将 K2 代入第代入第1式,得到式,得到Step 3:将将 yi+1 与与 y(xi+1)在在 xi 点
4、的点的泰勒泰勒展开作比较展开作比较要求要求 ,则必须有:,则必须有:这里有这里有 个未知个未知数,数,个方程。个方程。32存在存在无穷多个解无穷多个解。所有满足上式的格式统称为。所有满足上式的格式统称为2阶龙格阶龙格-库库塔格式塔格式。注意到,注意到,就是改进的欧拉法。就是改进的欧拉法。Q:为获得更高的精度,应该如何进一步推广?为获得更高的精度,应该如何进一步推广?其中其中 i (i=1,m),i (i=2,m)和和 ij(i=2,m;j=1,i 1)均为待均为待定系数,确定这些系数定系数,确定这些系数的步骤与前面相似。的步骤与前面相似。).,(.),(),(),(.1122112321313
5、312122122111 +=+=+=+=mm mmmmimiiiiiimmiihKhKhKyhxfKhKhKyhxfKhKyhxfKyxfKKKKhyy 最常用为四级最常用为四级4阶阶经典龙格经典龙格-库塔法库塔法/*ClassicalRunge-KuttaMethod*/:注:注:龙格龙格-库塔法库塔法的主要运算在于计算的主要运算在于计算 Ki 的值,即计算的值,即计算 f 的的值。值。Butcher 于于1965年给出了计算量与可达到的最高精年给出了计算量与可达到的最高精度阶数的关系:度阶数的关系:753可达到的最高精度可达到的最高精度642每步须算每步须算Ki 的个数的个数 由于龙格由于龙格-库塔法的导出基于泰勒展开,故精度主要受库塔法的导出基于泰勒展开,故精度主要受解函数的光滑性影响。对于光滑性不太好的解,最好解函数的光滑性影响。对于光滑性不太好的解,最好采用采用低阶算法低阶算法而将步长而将步长h 取小取小。结束语结束语谢谢大家聆听!谢谢大家聆听!15