电磁48学时总复习.ppt

上传人:豆**** 文档编号:60585882 上传时间:2022-11-17 格式:PPT 页数:138 大小:6.17MB
返回 下载 相关 举报
电磁48学时总复习.ppt_第1页
第1页 / 共138页
电磁48学时总复习.ppt_第2页
第2页 / 共138页
点击查看更多>>
资源描述

《电磁48学时总复习.ppt》由会员分享,可在线阅读,更多相关《电磁48学时总复习.ppt(138页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波电磁48学时总复习 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 2第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波要求:1、掌握三种坐标的建立 2、能写出三种坐标的梯度、散度和旋度,以及三度的性质。3、掌握散度定理和斯托克斯定理。3第3章 静态电磁

2、场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波1 三种常用的正交曲线坐标系三种常用的正交曲线坐标系 在电磁场与波理论中,在电磁场与波理论中,三种常用的正交曲线坐标系为:三种常用的正交曲线坐标系为:直角直角坐坐标系、圆柱坐标系和球坐标系标系、圆柱坐标系和球坐标系。1.1.直角坐标系直角坐标系直角坐标系直角坐标系 位置矢量位置矢量线元矢量线元矢量体积元体积元坐标变量坐标变量坐标单位矢量坐标单位矢量点点P(x0,y0,z0)0yy=(平面)(平面)o x y z0 xx=(平面)(平面)0zz=(平面(平面)P 直角坐标系直角坐标系 4第3章 静态电磁场及其边值问题的解静态

3、电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.圆柱坐标系圆柱坐标系坐标变量坐标变量坐标单位矢量坐标单位矢量线元矢量线元矢量体积元体积元圆柱坐标系中的线元、面元和体积元圆柱坐标系中的线元、面元和体积元圆柱坐标系圆柱坐标系(半平面半平面)(圆柱面圆柱面)(平面平面)5第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.球坐标系球坐标系坐标变量坐标变量坐标单位矢量坐标单位矢量线元矢量线元矢量体积元体积元球坐标系中的线元、面元和体积元球坐标系中的线元、面元和体积元球坐标系球坐标系(半平面半平面)(圆锥面圆锥面)(球面球面)6第3章 静态电磁场及其边值问题

4、的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波梯度的表达式梯度的表达式:圆柱坐标系圆柱坐标系 球坐标系球坐标系直角坐标系直角坐标系 1.标量场的梯度标量场的梯度(或或 )意义意义:描述标量描述标量场在某点的最大变化率及其变化最大的方向场在某点的最大变化率及其变化最大的方向概念概念:,其中其中 取得最大值的方向取得最大值的方向2 三种坐标系的三度三种坐标系的三度7第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波圆柱坐标系圆柱坐标系球坐标系球坐标系直角坐标系直角坐标系2 2、散度的表、散度的表 达式达式:了解散度的有关公式了解散度的有关公式:8第

5、3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3 3、旋度的计算公式、旋度的计算公式:直角坐标系直角坐标系 圆柱坐标系圆柱坐标系 球坐标系球坐标系9第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波了解旋度的有关公式了解旋度的有关公式:矢量场的旋度矢量场的旋度的散度恒为零的散度恒为零标量场的梯度标量场的梯度的旋度恒为零的旋度恒为零10第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波4.散度定理(高斯定理)散度定理(高斯定理)体积的剖分体积的剖分VS1S2en2en1S 从散度的

6、定义出发,可从散度的定义出发,可以得到矢量场在空间任意闭以得到矢量场在空间任意闭合曲面的通量等于该闭合曲合曲面的通量等于该闭合曲面所包含体积中矢量场的散面所包含体积中矢量场的散度的体积分,即度的体积分,即 散度定理是闭合曲面积分与体积分之间的一个变换关系,散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。在电磁理论中有着广泛的应用。11第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.斯托克斯定理斯托克斯定理 斯托克斯斯托克斯定理是闭合曲线定理是闭合曲线积分与曲面积分之间的一个变积分与曲面积分之间的一个变换关系式,也在电磁理

7、论中有换关系式,也在电磁理论中有广泛的应用。广泛的应用。曲面的曲面的剖分剖分方向相反大小方向相反大小相等结果抵消相等结果抵消 从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即12第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 13第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波要求掌握:要求掌握:1 1、电流密度矢量、电荷守恒定律(电流连续性方程)的积、电流密度矢

8、量、电荷守恒定律(电流连续性方程)的积分和微分形式。分和微分形式。2 2、静电场的高斯定理和环路定理的积分和微分形式(散度、静电场的高斯定理和环路定理的积分和微分形式(散度和旋度)和旋度).3 3、静磁场的高斯定理和环路定理的积分和微分形式(散度、静磁场的高斯定理和环路定理的积分和微分形式(散度和旋度)和旋度).4 4、媒质的电磁特性:极化、磁化和导电的物理量。、媒质的电磁特性:极化、磁化和导电的物理量。5 5、电磁感应定律和位移电流。电磁感应定律和位移电流。6 6、麦克斯韦方程组和本构关系麦克斯韦方程组和本构关系 7、电磁场的边界条件、电磁场的边界条件注:注:例例2.4.1 例例2.4.2

9、例例2.4.3 例例2.5.3 例例2.5.4 例例2.6.2 例例2.7.1 及相应的作业要求掌握及相应的作业要求掌握.14第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.1 电荷守恒定律(电流连续性方程)电荷守恒定律(电流连续性方程)电荷守恒定律电荷守恒定律:电荷既不能被创造,也不能被消灭,只能从物体电荷既不能被创造,也不能被消灭,只能从物体 的一部分转移到另一部分,或者从一个物体转移的一部分转移到另一部分,或者从一个物体转移 到另一个物体。到另一个物体。电流连续性方程电流连续性方程积分形式积分形式微分形式微分形式流出闭曲面流出闭曲面S 的电流的

10、电流等于体积等于体积V 内单位时内单位时间所减少的电荷量间所减少的电荷量恒定电流的连续性方程恒定电流的连续性方程恒定电流是无源场,电恒定电流是无源场,电流线是连续的闭合曲线,流线是连续的闭合曲线,既无起点也无终点既无起点也无终点电荷守恒定律是电磁现象中的基本定律之一。电荷守恒定律是电磁现象中的基本定律之一。15第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.2 静电场的散度与旋度静电场的散度与旋度 高斯定理表明高斯定理表明:静电场是有源场,电力线起始于正电荷,终止静电场是有源场,电力线起始于正电荷,终止 于负电荷。于负电荷。静电场的散度静电场的散度(

11、微分形式)(微分形式)1.静电场散度与高斯定理静电场散度与高斯定理静电场的高斯定理静电场的高斯定理(积分形式)(积分形式)环路定理表明环路定理表明:静电场是无旋场,是保守场,电场力做功与路径静电场是无旋场,是保守场,电场力做功与路径 无关。无关。静电场的旋度静电场的旋度(微分形式)(微分形式)2.静电场旋度与环路定理静电场旋度与环路定理静电场的环路定理静电场的环路定理(积分形式)(积分形式)不要求推导过程,不要求推导过程,要求掌握性质和应用要求掌握性质和应用16第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.3 恒定磁场的散度和旋度恒定磁场的散度和旋

12、度 1.1.恒定磁场的散度与磁通连续性原理恒定磁场的散度与磁通连续性原理磁通连续性原理磁通连续性原理表明表明:恒定磁场是无源场,磁感应线是无起点和恒定磁场是无源场,磁感应线是无起点和 终点的闭合曲线。终点的闭合曲线。恒定场的散度恒定场的散度(微分形式)(微分形式)磁通连续性原理磁通连续性原理(积分形式)(积分形式)安培环路定理表明安培环路定理表明:恒定磁场是有旋场,是非保守场、电流是磁恒定磁场是有旋场,是非保守场、电流是磁 场的旋涡源。场的旋涡源。恒定磁场的旋度恒定磁场的旋度(微分形式)(微分形式)2.恒定磁场的旋度与安培环路定理恒定磁场的旋度与安培环路定理安培环路定理安培环路定理(积分形式)

13、(积分形式)不要求推导过程,不要求推导过程,性质和应用要掌握性质和应用要掌握17第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.4 媒质的电磁特性媒质的电磁特性 媒质对电磁场的响应可分为三种情况:媒质对电磁场的响应可分为三种情况:极化极化、磁化磁化和和传导传导。描述媒质电磁特性的参数为:描述媒质电磁特性的参数为:电容率(介电常数)电容率(介电常数)、磁导率磁导率 和和电导率电导率。一、一、电介质的极化及其极化的物理量电介质的极化及其极化的物理量1、极化强度矢量极化强度矢量2.极化电荷体密度极化电荷体密度3.电位移矢量电位移矢量 介质中的高斯定理介质中

14、的高斯定理4.电介质的本构关系电介质的本构关系18第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波任意闭合曲面电位移矢任意闭合曲面电位移矢量量 D 的通量等于该曲面的通量等于该曲面包含自由电荷的代数和包含自由电荷的代数和 小结小结:静电场是有源无旋场,电介质中的基本方程为:静电场是有源无旋场,电介质中的基本方程为 引入电位移矢量(单位:引入电位移矢量(单位:C/m2)将极化电荷体密度表达式将极化电荷体密度表达式 代入代入 ,有,有则有则有 其积分形式为其积分形式为(微分形式),(微分形式),(积分形式)(积分形式)19第3章 静态电磁场及其边值问题的解静

15、态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波二、二、磁介质的磁化及其磁化的物理量磁介质的磁化及其磁化的物理量1、磁化强度矢量、磁化强度矢量2.磁化电流密度矢量磁化电流密度矢量3.磁场强度矢量磁场强度矢量 介质中的安培环路定理介质中的安培环路定理4.磁介质的本构关系磁介质的本构关系定义磁场强度定义磁场强度 为:为:(积分形式)(积分形式)(微分形式)(微分形式)20第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波三、媒质的传导特性三、媒质的传导特性 对于线性和各向同性导电媒质,媒质内任一点的电流密度矢对于线性和各向同性导电媒质,媒质内任一点的电流密

16、度矢量量 J 和电场强度和电场强度 E 成正比,表示为成正比,表示为这就是欧姆定律的微分形式。式中的比例系数这就是欧姆定律的微分形式。式中的比例系数 称为媒质的电导称为媒质的电导率,单位是率,单位是S/m(西门子(西门子/米米=1/欧姆欧姆米)。米)。晶格晶格带电粒子带电粒子 存在可以自由移动带电粒子的介质称为存在可以自由移动带电粒子的介质称为导电媒质导电媒质。在外场作。在外场作用下,导电媒质中将形成定向移动电流。用下,导电媒质中将形成定向移动电流。21第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.5 麦克斯韦方程组的积分形式和微分形式麦克斯韦方程

17、组的积分形式和微分形式22第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.7 边界条件一般表达式边界条件一般表达式 在两种理想介质在两种理想介质分界面上,通常没有分界面上,通常没有电荷和电流分布,即电荷和电流分布,即JS0、S0,故,故 的法向分量连续的法向分量连续 的法向分量连续的法向分量连续 的切向分量连续的切向分量连续 的切向分量连续的切向分量连续23第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波理想导体表面上的电荷密度等于理想导体表面上的电荷密度等于 的法向分量的法向分量理想导体表面上理想导体表面上

18、的法向分量为的法向分量为0 0理想导体表面上理想导体表面上 的切向分量为的切向分量为0 0理想导体表面的面电流密度等于理想导体表面的面电流密度等于 的切向分量的切向分量 理想导体表面上的边界条件理想导体表面上的边界条件 设媒质设媒质2为理想导体,则为理想导体,则E2、D2、H2、B2均为零,故均为零,故24第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波25第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波要求掌握:要求掌握:1 1、静电场分析静电场分析:电位及其微分方程、边界条件和求解微分电位及其微分方程、边界条件

19、和求解微分方程;静电场的能量。方程;静电场的能量。2 2、掌握、掌握恒定磁场的矢量磁位和标量磁位,恒定磁场的能量。恒定磁场的矢量磁位和标量磁位,恒定磁场的能量。3 3、镜像法的基本原理及掌握几种类型求解。、镜像法的基本原理及掌握几种类型求解。3.1126第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波微分形式:微分形式:本构关系:本构关系:积分形式:积分形式:3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条件若分界面上不存在面电荷,即若分界面上不存在面电荷,即 ,则,则27第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与

20、电磁波电磁场与电磁波介质介质2 2介质介质1 1 在静电平衡的情况下,导体内部的电场为在静电平衡的情况下,导体内部的电场为0,则导体表面的,则导体表面的边界条件为边界条件为 场矢量的折射关系场矢量的折射关系 导体表面的边界条件导体表面的边界条件28第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波由由即即静电场可以用一个标量函数的梯度来表示,静电场可以用一个标量函数的梯度来表示,标量函数标量函数 称为静称为静电场的标量电位或简称电位。电场的标量电位或简称电位。1.电位函数的定义电位函数的定义3.1.2 电位函数电位函数2.2.电位差电位差电位差电位差两端点

21、乘两端点乘 ,则有,则有将将上式两边从点上式两边从点P到点到点Q沿任意路径进行积分,得沿任意路径进行积分,得关于电位差的说明关于电位差的说明P、Q 两点间的电位差两点间的电位差电场力做电场力做的功的功29第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波在均匀介质中,有在均匀介质中,有3.电位的微分方程电位的微分方程在无源区域,在无源区域,标量泊松方程标量泊松方程拉普拉斯方程拉普拉斯方程30第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波4.4.静电位的边界条件静电位的边界条件静电位的边界条件静电位的边界条件 设设P

22、1和和P2是是介介质质分分界界面面两两侧侧紧紧贴贴界界面面的的相相邻邻两两点点,其其电电位位分分别为别为1和和2。当两点间距离当两点间距离l0时时导体表面上电位的边界条件:导体表面上电位的边界条件:由由 和和媒质媒质2媒质媒质1 若介质分界面上无自由电荷,即若介质分界面上无自由电荷,即常数,常数,31第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.1.4 静电场的能量静电场的能量 从场的观点来看,静电场的能量分布于电场所在的整个空间。从场的观点来看,静电场的能量分布于电场所在的整个空间。电场能量密度:电场能量密度:电场的总能量:电场的总能量:积分区域

23、为电场积分区域为电场所在的整个空间所在的整个空间对于线性、各向同性介质,则有对于线性、各向同性介质,则有32第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 例例3.1.7 半径为半径为a 的球形空间内均匀分布有电荷体密度为的球形空间内均匀分布有电荷体密度为的电的电荷,试求静电场能量。荷,试求静电场能量。解解:方法一方法一,利用利用 计算计算 根据高斯定理求得电场强度根据高斯定理求得电场强度 故故33第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.3 恒定磁场分析恒定磁场分析微分形式微分形式:1.基本方程基本方

24、程2.边界条件边界条件本构关系:本构关系:若分界面上不存在面电流,即若分界面上不存在面电流,即JS0,则,则积分形式积分形式:3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件34第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 矢量磁位的定义矢量磁位的定义 磁矢位的任意性磁矢位的任意性 与与电电位位一一样样,磁磁矢矢位位也也不不是是惟惟一一确确定定的的,它它加加上上任任意意一一个个标标量量 的梯度以后,仍然表示同一个磁场,即的梯度以后,仍然表示同一个磁场,即由由即恒定磁场可以用一个矢量函数的旋度来表示。即恒定磁场可以用一个矢量函数的旋

25、度来表示。磁磁矢矢位位的的任任意意性性是是因因为为只只规规定定了了它它的的旋旋度度,没没有有规规定定其其散散度度造造成成的的。为为了了得得到到确确定定的的A,可可以以对对A的的散散度度加加以以限限制制,在在恒恒定定磁磁场中通常规定,并称为场中通常规定,并称为库仑规范库仑规范。1.恒定磁场的矢量磁位恒定磁场的矢量磁位矢量磁位或称磁矢位矢量磁位或称磁矢位 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位35第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.恒定磁场的标量磁位恒定磁场的标量磁位 一一般般情情况况下下,恒恒定定磁磁场场只只能

26、能引引入入磁磁矢矢位位来来描描述述,但但在在无无传传导导电电流(流(J0)的单连通空间)的单连通空间 中,则有中,则有即即在在无无传传导导电电流流(J0)的的单单连连通通空空间间中中,可可以以引引入入一一个个标标量量位位函数来描述磁场。函数来描述磁场。标量磁位的引入标量磁位的引入标量磁位或磁标位标量磁位或磁标位 磁标位的微分方程磁标位的微分方程将将 代入代入等效磁荷体密度等效磁荷体密度磁壳磁壳36第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.3.4 恒定磁场的能量恒定磁场的能量 磁场能量密度磁场能量密度 从场的观点来看,磁场能量分布于磁场所在的整个

27、空间。从场的观点来看,磁场能量分布于磁场所在的整个空间。磁场能量密度:磁场能量密度:磁场的总能量:磁场的总能量:积分区域为电场积分区域为电场所在的整个空间所在的整个空间对于线性、各向同性介质,则有对于线性、各向同性介质,则有37第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 在场域在场域V 的边界面的边界面S上给定上给定 或或 的值,的值,则泊松方程或拉普拉斯方程在场域则泊松方程或拉普拉斯方程在场域V 具有惟具有惟一值。一值。惟一性定理的重要意义惟一性定理的重要意义给出了静态场边值

28、问题具有惟一解的条件给出了静态场边值问题具有惟一解的条件为静态场边值问题的各种求解方法提供了理论依据为静态场边值问题的各种求解方法提供了理论依据为求解结果的正确性提供了判据为求解结果的正确性提供了判据惟一性定理的表述惟一性定理的表述38第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 当当有有电电荷荷存存在在于于导导体体或或介介质质表表面面附附近近时时,导导体体和和介介质质表表面面会会出出现现感感应应电电荷荷或或极极化化电电荷荷,而而感感应应电电荷荷或或极极化化电电荷荷将将影影响响场场的分布。的分布。非非均均匀匀感感应应电电荷荷产产生生的的电电位位很很难

29、难求求解,可以用等效电荷的电位替代解,可以用等效电荷的电位替代1.问题的提出问题的提出几个实例几个实例q q3.5.1 镜像法的基本原理镜像法的基本原理接接地地导导体体板板附附近近有有一一个个点点电电荷荷,如如图图所所示。示。qq非均匀感应电荷非均匀感应电荷等效电荷等效电荷3.5 镜像法镜像法39第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 接地导体球附近有一个点电荷,如图。接地导体球附近有一个点电荷,如图。非非均均匀匀感感应应电电荷荷产产生生的的电电位位很很难难求求解解,可可以以用用等效电荷的电位替代等效电荷的电位替代 接地导体柱附近有一个线电荷。

30、情况与上例类似,但等效电接地导体柱附近有一个线电荷。情况与上例类似,但等效电 荷为线电荷。荷为线电荷。q q非均匀感应电荷非均匀感应电荷qq等效电荷等效电荷结论结论:所谓镜像法是:所谓镜像法是将不均匀电荷分布的作用等效为点电荷将不均匀电荷分布的作用等效为点电荷 或线电荷的作用或线电荷的作用。问题问题:这种等效电荷是否存在?:这种等效电荷是否存在?这种等效是否合理?这种等效是否合理?40第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.镜像法的原理镜像法的原理 用位于用位于场域边界外场域边界外虚设的较简单的镜像电荷分布来等效替代虚设的较简单的镜像电荷分布

31、来等效替代该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程得以明显简化的一种得以明显简化的一种间接求解法间接求解法。在导体形状、几何尺寸、带电状况和媒质几何结构、特性不在导体形状、几何尺寸、带电状况和媒质几何结构、特性不变的前提条件下,变的前提条件下,根据惟一性定理,只要找出的解答满足在同一根据惟一性定理,只要找出的解答满足在同一泛定方程下问题所给定的边界条件,那就是该问题的解答,并且泛定方程下问题所给定的边界条件,那就

32、是该问题的解答,并且是惟一的解答。是惟一的解答。镜像法正是巧妙地应用了这一基本原理、面向多镜像法正是巧妙地应用了这一基本原理、面向多种典型结构的工程电磁场问题所构成的一种有效的解析求解法。种典型结构的工程电磁场问题所构成的一种有效的解析求解法。3.镜像法的理论基础镜像法的理论基础 解的解的惟一性定理惟一性定理41第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 像电荷的个数、位置及其电量大小像电荷的个数、位置及其电量大小“三要素三要素”。4.镜像法应用的关键点镜像法应用的关键点5.确定镜像电荷的两条原则确定镜像电荷的两条原则等效求解的等效求解的“有效场域

33、有效场域”。镜像电荷的确定镜像电荷的确定像电荷必须位于所求解的场区域以外的空间中。像电荷必须位于所求解的场区域以外的空间中。像电荷的个数、位置及电荷量的大小以满足所求解的场像电荷的个数、位置及电荷量的大小以满足所求解的场 区域区域 的边界条件来确定。的边界条件来确定。42第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波1.点电荷对无限大接地导体平面的镜像点电荷对无限大接地导体平面的镜像满足原问题的边界条件,所得的结果是正确的。满足原问题的边界条件,所得的结果是正确的。3.5.2 接地导体平面的镜像接地导体平面的镜像镜像电荷镜像电荷电位函数电位函数因因 z

34、=0 时,时,有效区域有效区域q qq q43第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波上半空间上半空间(z0)的电位函数)的电位函数q q导体平面上的感应电荷密度为导体平面上的感应电荷密度为导体平面上的总感应电荷为导体平面上的总感应电荷为44第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.点电荷对相交半无限大接地导体平面的镜像点电荷对相交半无限大接地导体平面的镜像 如如图图所所示示,两两个个相相互互垂垂直直相相连连的的半半无无限限大大接接地地导导体体平平板板,点点电荷电荷q 位于位于(d1,d2)处。处

35、。显显然然,q1 对对平平面面 2 以以及及 q2 对对平平面面 1 均不能满足边界条件。均不能满足边界条件。对于平面对于平面1,有镜像电荷,有镜像电荷q1=q,位于,位于(d1,d2)对于平面对于平面2,有镜像电荷,有镜像电荷q2=q,位于,位于(d1,d2)只有在只有在(d1,d2)处处再设置一再设置一镜像电荷镜像电荷q3=q,所有边界条件才能,所有边界条件才能得到满足。得到满足。电位函数电位函数 d11qd22RR1R2R3q1d1d2d2q2d1q3d2d145第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.5.3 导体球面的镜像导体球面的镜

36、像1.点电荷对接地导体球面的镜像点电荷对接地导体球面的镜像 球面上的感应电荷可用镜像电荷球面上的感应电荷可用镜像电荷 q来等效。来等效。q 应位于导体球内(应位于导体球内(因为因为不可影响原方程不可影响原方程),且在点电荷),且在点电荷q与球与球心的连线上,距球心为心的连线上,距球心为d。则有。则有 如图所示,点电荷如图所示,点电荷q 位于半径位于半径为为a 的接地导体球外,距球心为的接地导体球外,距球心为d。方法方法:利用导体球面上电位为零确定:利用导体球面上电位为零确定 和和 q。问题问题:PqarRdqPaqrRRdd46第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场

37、与电磁波电磁场与电磁波 令令 ra,由球面上电位为零,由球面上电位为零,即即 0,得,得此式应在整个球面上都成立。此式应在整个球面上都成立。条件条件:若:若像电荷的位置像电荷的位置像电荷的电量像电荷的电量常数常数qPqaRRddO由于由于47第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波球外的电位函数为球外的电位函数为48第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波点电荷对接地空心导体球壳的镜像点电荷对接地空心导体球壳的镜像 如图所示接地空心导体球壳的内半径为如图所示接地空心导体球壳的内半径为a、外半径为、外

38、半径为b,点电,点电荷荷q 位于球壳内,与球心相距为位于球壳内,与球心相距为d(d|q|,可见镜像电荷的电荷量大于点电荷的电荷量,可见镜像电荷的电荷量大于点电荷的电荷量像电荷的位置和电量与外半径像电荷的位置和电量与外半径 b 无关(无关(为什么为什么?)?)aqdobqrRRaqdOd 与点电荷位于接地导体球外与点电荷位于接地导体球外同样的分析,可得到同样的分析,可得到49第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波球壳内的电位球壳内的电位50第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波2.点电荷对不接地导

39、体球的镜像点电荷对不接地导体球的镜像 先先设设想想导导体体球球是是接接地地的的,则则球球面面上上只只有有总总电电荷荷量量为为q的的感感应应电荷分布,则电荷分布,则 导体球不接地时的特点导体球不接地时的特点:导体球面是电位不为零的等位面;导体球面是电位不为零的等位面;球面上既有感应负电荷分布也有感应正电荷分布,但总的感应球面上既有感应负电荷分布也有感应正电荷分布,但总的感应 电荷为零。电荷为零。采用叠加原理来确定镜像电荷采用叠加原理来确定镜像电荷 点电荷点电荷q 位于一个半径为位于一个半径为a 的不的不接地导体球外,距球心为接地导体球外,距球心为d。PqarRdO51第3章 静态电磁场及其边值问

40、题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 然后断开接地线,并将电荷然后断开接地线,并将电荷q加于导体球上,从而使总电加于导体球上,从而使总电荷为零。为保持导体球面为等位面,所加的电荷荷为零。为保持导体球面为等位面,所加的电荷q 可用一个位可用一个位于球心的镜像电荷于球心的镜像电荷q来替代,即来替代,即球外任意点的电位为球外任意点的电位为qPaqrRRddqO52第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波3.5.5 点电荷与无限大电介质平面的镜像点电荷与无限大电介质平面的镜像 图图1 1 点点电电荷与荷与电电介介质质分界平面分界平

41、面特点:特点:在点电荷的电场作用下,电介质产在点电荷的电场作用下,电介质产生极化,在介质分界面上形成极化电荷分生极化,在介质分界面上形成极化电荷分布。此时,空间中任一点的电场由点电荷布。此时,空间中任一点的电场由点电荷与极化电荷共同产生。与极化电荷共同产生。图图2 2 介介质质1 1的的镜镜像像电电荷荷问题问题:如图如图 1 所示,介电常数分别为所示,介电常数分别为 和和 的两种不同电介质的分界面是无限大的两种不同电介质的分界面是无限大平面,在电介质平面,在电介质 1 中有一个点电荷中有一个点电荷q,距,距分界平面为分界平面为h。分析方法:分析方法:计算电介质计算电介质 1 中的电位时,用中的

42、电位时,用位于介质位于介质 2 中的镜像电荷来代替分界面上中的镜像电荷来代替分界面上的极化电荷,并把整个空间看作充满介电的极化电荷,并把整个空间看作充满介电常数为常数为 的均匀介质,如图的均匀介质,如图2所示。所示。53第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波介质介质1中的电位为中的电位为 计算电介质计算电介质 2 中的电位时,用位中的电位时,用位于介质于介质 1 中的镜像电荷来代替分界面中的镜像电荷来代替分界面上的极化电荷,并把整个空间看作充上的极化电荷,并把整个空间看作充满介电常数为满介电常数为 的均匀介质,如图的均匀介质,如图 3 所示。介

43、质所示。介质2中的电位为中的电位为图图3 3 介介质质2 2的的镜镜像像电电荷荷+54第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波可得到可得到利用电位满足的边界条件利用电位满足的边界条件55第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波56第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波4.1 波动方程波动方程 在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有质,则有 无源区的波动方程无源区的波动方程同理可

44、得同理可得57第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波4.2 电磁场的位函数电磁场的位函数引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数的意义引入位函数的意义 位函数的定义位函数的定义在电磁理论中,通常采用洛仑兹条件,即在电磁理论中,通常采用洛仑兹条件,即58第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 说明说明 问题问题 应用洛仑兹条件的特点:应用洛仑兹条件的特点:位函数满足的方程在形式上是对称位函数满足的方程在形式上是对称 的的

45、,且且比比较较简简单单,易易求求解解;解解的的物物理理意意义义非非常常清清楚楚,明明确确地地 反映出电磁场具有有限的传递速度;反映出电磁场具有有限的传递速度;矢量位只决定于矢量位只决定于J,标,标 量位只决定于量位只决定于,这对求解方程特别有利。只需解出这对求解方程特别有利。只需解出A,无需,无需 解出解出 就可得到待求的电场和磁场。就可得到待求的电场和磁场。电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用用不不同同的的规规范范条条件件,矢矢量量位位A和和标标量量位位 的的解解也也不不相相同同,但但最最终终 得到的电磁场矢量是相同

46、的。得到的电磁场矢量是相同的。若应用库仑条件,位函数满足什么样的方程若应用库仑条件,位函数满足什么样的方程?具有什么特点具有什么特点?59第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波其中其中:单位时间内体积单位时间内体积V 中所增加中所增加 的电磁能量。的电磁能量。单位时间内电场对体积单位时间内电场对体积V中的电流所做的功;中的电流所做的功;在导电媒质中,即为体积在导电媒质中,即为体积V内总的损耗功率。内总的损耗功率。通过曲面通过曲面S 进入体积进入体积V 的电磁功率。的电磁功率。积分形式积分形式:坡坡印廷定理印廷定理 物理意义:物理意义:单位时间内

47、,通过曲面单位时间内,通过曲面S 进入体积进入体积V的电磁能量等于的电磁能量等于 体积体积V 中所增加的电磁场能量与损耗的能量之和。中所增加的电磁场能量与损耗的能量之和。4.3 电磁能量守恒定律电磁能量守恒定律 60第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 定义:定义:(W/m2)物理意义物理意义:的方向的方向 电磁能量传输的方向电磁能量传输的方向 的大小的大小 通过垂直于能量传输方通过垂直于能量传输方 向的单位面积的电磁功率向的单位面积的电磁功率 坡印廷矢量(坡印廷矢量(电磁能流密度矢量电磁能流密度矢量)描述时变电磁场中电磁能量传输的一个重要物

48、理量描述时变电磁场中电磁能量传输的一个重要物理量61第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 例例4.3.1 同轴线的内导体半径为同轴线的内导体半径为a、外导体的内半径为、外导体的内半径为b,其间,其间填充均匀的理想介质。设内外导体间的电压为填充均匀的理想介质。设内外导体间的电压为U,导体中流过的电,导体中流过的电流为流为I。(。(1)在导体为理想导体的情况下,计算同轴线中传输的)在导体为理想导体的情况下,计算同轴线中传输的功率;(功率;(2)当导体的电导率)当导体的电导率为有限值时,计算通过内导体表面为有限值时,计算通过内导体表面进入每单位长度

49、内导体的功率。进入每单位长度内导体的功率。同同轴线轴线62第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 解:解:(1)在内外导体为理想导体的情况下,电场和磁场只存)在内外导体为理想导体的情况下,电场和磁场只存在于内外导体之间的理想介质中,内外导体表面的电场无切向分量,在于内外导体之间的理想介质中,内外导体表面的电场无切向分量,只有电场的径向分量。利用高斯定理和安培环路定理,容易求得内只有电场的径向分量。利用高斯定理和安培环路定理,容易求得内外导体之间的电场和磁场分别为外导体之间的电场和磁场分别为 内外导体之间任意横截面上的坡印廷矢量内外导体之间任意横

50、截面上的坡印廷矢量 63第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波电磁能量在内外导体之间的介质中沿轴方向流动,即由电源流向电磁能量在内外导体之间的介质中沿轴方向流动,即由电源流向负载,如图所示。负载,如图所示。穿过任意横截面的功率为穿过任意横截面的功率为同轴线中的电场、磁场和坡印廷矢量同轴线中的电场、磁场和坡印廷矢量(理想导体情况)(理想导体情况)64第3章 静态电磁场及其边值问题的解静态电磁场及其边值问题的解电磁场与电磁波电磁场与电磁波 (2)当导体的电导率)当导体的电导率为有限值时,导体内部存在沿电流方为有限值时,导体内部存在沿电流方向的电场向

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁