电磁场与电磁波复习ppt课件.ppt

上传人:豆**** 文档编号:60585474 上传时间:2022-11-17 格式:PPT 页数:163 大小:7.45MB
返回 下载 相关 举报
电磁场与电磁波复习ppt课件.ppt_第1页
第1页 / 共163页
电磁场与电磁波复习ppt课件.ppt_第2页
第2页 / 共163页
点击查看更多>>
资源描述

《电磁场与电磁波复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《电磁场与电磁波复习ppt课件.ppt(163页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、电磁场与电磁波电磁场与电磁波电磁场与电磁波复习ppt课件 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望电磁场与电磁波电磁场与电磁波梯度的表达式梯度的表达式:圆柱坐标系圆柱坐标系 球坐标系球坐标系直角坐标系直角坐标系 3.标量场的梯度标量场的梯度(或或 )意义意义:描述标量描述标量场在某点的最大变化率及其变化最大的方向。场在某点的最大变化率及其变化最大的方向。概念概念:,其中其中 取得最大值的方向取得最大值的方向2电磁场与电磁波电磁场与电磁波标量场的梯度是矢量场,

2、它在空间某标量场的梯度是矢量场,它在空间某点的方向表示该点场变化最大(增大)点的方向表示该点场变化最大(增大)的方向,其数值表示变化最大方向上的方向,其数值表示变化最大方向上场的空间变化率。场的空间变化率。标量场在某个方向上的方向导数,是标量场在某个方向上的方向导数,是梯度在该方向上的投影。梯度在该方向上的投影。梯度的性质梯度的性质:标量场的梯度垂直于通过该点的等值面(或切平面)标量场的梯度垂直于通过该点的等值面(或切平面)3电磁场与电磁波电磁场与电磁波3.矢量场的散度矢量场的散度 为了定量研究场与源之间的关系,需建立场空间任意点(小为了定量研究场与源之间的关系,需建立场空间任意点(小体积元)

3、的通量源与矢量场(小体积元曲面的通量)的关系。利体积元)的通量源与矢量场(小体积元曲面的通量)的关系。利用极限方法得到这一关系:用极限方法得到这一关系:称为矢量场的称为矢量场的散度散度。散度是矢量通过包含该点的任意闭合小曲面的通量与闭合小散度是矢量通过包含该点的任意闭合小曲面的通量与闭合小曲面所包围体积元之比的极限。曲面所包围体积元之比的极限。4电磁场与电磁波电磁场与电磁波圆柱坐标系圆柱坐标系球坐标系球坐标系直角坐标系直角坐标系散度的表达式散度的表达式:5电磁场与电磁波电磁场与电磁波4.散度定理散度定理体积的剖分体积的剖分VS1S2en2en1S 从散度的定义出发,可从散度的定义出发,可以得到

4、矢量场在空间任意闭以得到矢量场在空间任意闭合曲面的通量等于该闭合曲合曲面的通量等于该闭合曲面所包含体积中矢量场的散面所包含体积中矢量场的散度的体积分,即度的体积分,即 散度定理是闭合曲面积分与体积分之间的一个变换关系,散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。在电磁理论中有着广泛的应用。6电磁场与电磁波电磁场与电磁波旋度的计算公式旋度的计算公式:直角坐标系直角坐标系 圆柱坐标系圆柱坐标系 球坐标系球坐标系7电磁场与电磁波电磁场与电磁波3.斯托克斯定理斯托克斯定理 斯托克斯斯托克斯定理是闭合曲线定理是闭合曲线积分与曲面积分之间的一个变积分与曲面积分之间的一个变

5、换关系式,也在电磁理论中有换关系式,也在电磁理论中有广泛的应用。广泛的应用。曲面的曲面的剖分剖分方向相反大小方向相反大小相等结果抵消相等结果抵消 从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即8电磁场与电磁波电磁场与电磁波2.矢量场按源的分类矢量场按源的分类(1)无旋场)无旋场性质性质:,线积分与路径无关,是保守场。,线积分与路径无关,是保守场。仅有散度源而无旋度源的矢量场,仅有散度源而无旋度源的矢量场,无旋场无旋场可以用标量场的梯度表示为可

6、以用标量场的梯度表示为例如:静电场例如:静电场9电磁场与电磁波电磁场与电磁波(2)无散场)无散场 仅有旋度源而无散度源的矢量场仅有旋度源而无散度源的矢量场,即,即性质性质:无散场可以表示为另一个矢量场的旋度无散场可以表示为另一个矢量场的旋度例如,恒定磁场例如,恒定磁场10电磁场与电磁波电磁场与电磁波亥姆霍兹定理亥姆霍兹定理:若矢量场在无限空间中处处单值,且其导数连续有界,源分若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为表示为 式中:式中:亥姆霍兹定理表明:在无界空间区亥

7、姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。域,矢量场可由其散度及旋度确定。1.8 亥姆霍兹定理亥姆霍兹定理11电磁场与电磁波电磁场与电磁波2.1 电荷守恒定律电荷守恒定律2.2 真空中静电场的基本规律真空中静电场的基本规律2.3 真空中恒定磁场的基本规律真空中恒定磁场的基本规律2.4 媒质的电磁特性媒质的电磁特性2.5 电磁感应定律和位移电流电磁感应定律和位移电流2.6 麦克斯韦方程组麦克斯韦方程组2.7 电磁场的边界条件电磁场的边界条件第第2章章 电磁场的基本规律电磁场的基本规律12电磁场与电磁波电磁场与电磁波2.1 电荷守恒定律电荷守恒定律 电磁场物理模型中的基本物理量可

8、分为源量和场量两大类。电磁场物理模型中的基本物理量可分为源量和场量两大类。电荷电荷电流电流电场电场磁场磁场(运动)(运动)源源量量为为电电荷荷 和和电电流流 ,分分别别用用来来描描述述产产生生电电磁磁效效应应的的两类场源。电荷是产生电场的源,电流是产生磁场的源。两类场源。电荷是产生电场的源,电流是产生磁场的源。13电磁场与电磁波电磁场与电磁波2.1.3 电荷守恒定律(电流连续性方程)电荷守恒定律(电流连续性方程)电荷守恒定律电荷守恒定律:电荷既不能被创造,也不能被消灭,只能从物体电荷既不能被创造,也不能被消灭,只能从物体 的一部分转移到另一部分,或者从一个物体转移的一部分转移到另一部分,或者从

9、一个物体转移 到另一个物体。到另一个物体。电流连续性方程电流连续性方程积分形式积分形式微分形式微分形式流出闭曲面流出闭曲面S 的电流的电流等于体积等于体积V 内单位时内单位时间所减少的电荷量。间所减少的电荷量。恒定电流的连续性方程恒定电流的连续性方程恒定电流是无源场,电恒定电流是无源场,电流线是连续的闭合曲线,流线是连续的闭合曲线,既无起点也无终点。既无起点也无终点。电荷守恒定律是电磁现象中的基本定律之一。电荷守恒定律是电磁现象中的基本定律之一。14电磁场与电磁波电磁场与电磁波2.2 真空中静电场的基本规律真空中静电场的基本规律静电场静电场:由静止电荷产生的电场。由静止电荷产生的电场。重要特征

10、重要特征:对位于电场中的电荷有电场力作用。对位于电场中的电荷有电场力作用。本节内容本节内容 2.2.1 库仑定律库仑定律 电场强度电场强度 2.2.2 静电场的散度与旋度静电场的散度与旋度15电磁场与电磁波电磁场与电磁波1.库仑库仑(Coulomb)定律定律(1785年年)真空中静止点电荷真空中静止点电荷 q1 对对 q2 的作用力的作用力:,满足牛顿第三定律。,满足牛顿第三定律。大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2.2.1 库仑定律库仑定律 电场强度电场强度 方向沿方向沿q1 和和q2 连线方向,同性电荷相排斥,异性电

11、荷相吸引;连线方向,同性电荷相排斥,异性电荷相吸引;说明:说明:16电磁场与电磁波电磁场与电磁波2.电场强度电场强度 空间某点的电场强度定义为置于该点的单位点电荷(又称空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即试验电荷)受到的作用力,即如果电荷是连续分布呢?如果电荷是连续分布呢?根据上述定义,真空中静止点根据上述定义,真空中静止点电荷电荷q 激发的电场为激发的电场为 描述电场分布的基本物理量描述电场分布的基本物理量 电场强度矢量电场强度矢量试验正电荷试验正电荷 17电磁场与电磁波电磁场与电磁波电偶极矩电偶极矩+q电偶极子电偶极子zolq 电偶极子是由相距很近、

12、带等值异号的两个点电荷组成的电偶极子是由相距很近、带等值异号的两个点电荷组成的电荷系统,其远区电场强度为电荷系统,其远区电场强度为 电偶极子的电场强度:电偶极子的电场强度:18电磁场与电磁波电磁场与电磁波2.2.2 静电场的散度与旋度静电场的散度与旋度 高斯定理表明高斯定理表明:静电场是有源场,电力线起始于正电荷,终止静电场是有源场,电力线起始于正电荷,终止 于负电荷。于负电荷。静电场的散度静电场的散度(微分形式)(微分形式)1.静电场散度与高斯定理静电场散度与高斯定理静电场的高斯定理静电场的高斯定理(积分形式)(积分形式)环路定理表明环路定理表明:静电场是无旋场,是保守场,电场力做功与路径静

13、电场是无旋场,是保守场,电场力做功与路径 无关。无关。静电场的旋度静电场的旋度(微分形式)(微分形式)2.静电场旋度与环路定理静电场旋度与环路定理静电场的环路定理静电场的环路定理(积分形式)(积分形式)19电磁场与电磁波电磁场与电磁波 在电场分布具有一定对称性的情况下,可以利用高斯定理计在电场分布具有一定对称性的情况下,可以利用高斯定理计算电场强度。算电场强度。3.利用高斯定理计算电场强度利用高斯定理计算电场强度具有以下几种对称性的场可用高斯定理求解:具有以下几种对称性的场可用高斯定理求解:球对称分布球对称分布:包括均匀带电的球面,球体和多层同心球壳等。:包括均匀带电的球面,球体和多层同心球壳

14、等。带电球壳带电球壳多层同心球壳多层同心球壳均匀带电球体均匀带电球体aO020电磁场与电磁波电磁场与电磁波 无限大平面电荷无限大平面电荷:如无限大的均匀带电平面、平板等。:如无限大的均匀带电平面、平板等。轴对称分布轴对称分布:如无限长均匀带电的直线,圆柱面,圆柱壳等。:如无限长均匀带电的直线,圆柱面,圆柱壳等。21电磁场与电磁波电磁场与电磁波 例例2.2.2 求真空中均匀带电球体的场强分布。已知球体半径求真空中均匀带电球体的场强分布。已知球体半径为为a,电,电 荷密度为荷密度为 0。解解:(1)球外某点的场强球外某点的场强(2)求球体内一点的场强)求球体内一点的场强ar0rrEa(r r a

15、a)(r a,求传输线单位长度的电容。,求传输线单位长度的电容。解解 设两导线单位长度带电量分别为设两导线单位长度带电量分别为 和和 。由于。由于 ,故,故可近似地认为电荷分别均匀分布在两可近似地认为电荷分别均匀分布在两导线的表面上。应用高斯定理和叠加原导线的表面上。应用高斯定理和叠加原理,可得到两导线之间的平面上任一点理,可得到两导线之间的平面上任一点P 的电场强度为的电场强度为两导线间的电位差两导线间的电位差故单位长度的电容为故单位长度的电容为51电磁场与电磁波电磁场与电磁波 例例3.1.6 同轴线内导体半径为同轴线内导体半径为a,外导体半径为,外导体半径为b,内外导体,内外导体间填充的介

16、电常数为间填充的介电常数为 的均匀介质,的均匀介质,求同轴线单位长度的电容。求同轴线单位长度的电容。内外导体间的电位差内外导体间的电位差 解解 设同轴线的内、外导体单位长度带电量分别为设同轴线的内、外导体单位长度带电量分别为 和和 ,应,应用高斯定理可得到内外导体间任一点的电场强度为用高斯定理可得到内外导体间任一点的电场强度为故得同轴线单位长度的电容为故得同轴线单位长度的电容为同同轴线轴线52电磁场与电磁波电磁场与电磁波 2.部分电容部分电容在多导体系统中,任何两个导体间的电压都要受到其余导体在多导体系统中,任何两个导体间的电压都要受到其余导体 上上的的电电荷荷的的影影响响。因因此此,研研究究

17、多多导导体体系系统统时时,必必须须把把电电容容的的 概念加以推广,引入部分电容的概念。概念加以推广,引入部分电容的概念。所所谓谓部部分分电电容容,是是指指多多导导体体系系统统中中,一一个个导导体体在在其其余余导导体体的影响下,与另一个导体构成的电容。的影响下,与另一个导体构成的电容。在由在由(N+1)个导体组成的系统中,共有个导体组成的系统中,共有 个部分电容。个部分电容。53电磁场与电磁波电磁场与电磁波2.电场能量密度电场能量密度 从场的观点来看,静电场的能量分布于电场所在的整个空间。从场的观点来看,静电场的能量分布于电场所在的整个空间。电场能量密度:电场能量密度:电场的总能量:电场的总能量

18、:积分区域为电场积分区域为电场所在的整个空间所在的整个空间对于线性、各向同性介质,则有对于线性、各向同性介质,则有54电磁场与电磁波电磁场与电磁波 例例3.1.7 半径为半径为a 的球形空间内均匀分布有电荷体密度为的球形空间内均匀分布有电荷体密度为的电的电荷,试求静电场能量。荷,试求静电场能量。解解:方法一方法一,利用利用 计算计算 根据高斯定理求得电场强度根据高斯定理求得电场强度 故故55电磁场与电磁波电磁场与电磁波 方法二方法二:利用利用 计算计算 先求出电位分布先求出电位分布 故故56电磁场与电磁波电磁场与电磁波3.2.2 恒定电场与静电场的比拟恒定电场与静电场的比拟 如果两种场,在一定

19、条件下,场方程有相同的形式,边界如果两种场,在一定条件下,场方程有相同的形式,边界形状相同,边界条件等效,则其解也必有相同的形式,求解这形状相同,边界条件等效,则其解也必有相同的形式,求解这两种场分布必然是同一个数学问题。只需求出一种场的解,就两种场分布必然是同一个数学问题。只需求出一种场的解,就可以用对应的物理量作替换而得到另一种场的解。这种求解场可以用对应的物理量作替换而得到另一种场的解。这种求解场的方法称为比拟法。的方法称为比拟法。静电场静电场恒定电场恒定电场57电磁场与电磁波电磁场与电磁波恒定电场与静电场的比拟恒定电场与静电场的比拟基本方程基本方程静电场(静电场(区域)区域)本构关系本

20、构关系位函数位函数边界条件边界条件恒定电场(电源外)恒定电场(电源外)对应物理量对应物理量静电场静电场恒定电场恒定电场58电磁场与电磁波电磁场与电磁波 例例3.2.1一一个个有有两两层层介介质质的的平平行行板板电电容容器器,其其参参数数分分别别为为 1、1 和和 2、2,外加电压,外加电压U。求介质面上的自由电荷密度。求介质面上的自由电荷密度。解解:极极板板是是理理想想导导体体,为等位面,电流沿为等位面,电流沿z 方向。方向。59电磁场与电磁波电磁场与电磁波 工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之间,填充不导电的材料作电绝缘。这

21、些绝缘材料的电导率远远小间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压U 时,必定会有微小的漏电流时,必定会有微小的漏电流 J 存在。存在。漏电流与电压之比为漏电导,即漏电流与电压之比为漏电导,即其倒数称为绝缘电阻,即其倒数称为绝缘电阻,即3.2.3 漏电导漏电导60电磁场与电磁波电磁场与电磁波(1)假定两电极间的电流为假定两电极间的电流为I;(2)计算两电极间的电流密度计算两电极间的电流密度(3)矢量矢量J;(3)由由J=E 得到得到 E;(4)由由 ,求出两导,求出两导

22、(5)体间的电位差;体间的电位差;(6)(5)求比值求比值 ,即得出,即得出(7)所求电导。所求电导。计算电导的方法一计算电导的方法一:计算电导的方法二计算电导的方法二:(1)假定两电极间的电位差为假定两电极间的电位差为U;(2)计算两电极间的电位分布计算两电极间的电位分布;(3)由由 得到得到E;(4)由由 J=E 得到得到J;(5)由由 ,求出两导体间,求出两导体间 电流;电流;(6)求比值求比值 ,即得出所,即得出所 求电导。求电导。计算电导的方法三计算电导的方法三:静电比拟法:静电比拟法:61电磁场与电磁波电磁场与电磁波 例例3.2.2 求同轴电缆的绝缘电阻。设内外的半径分别为求同轴电

23、缆的绝缘电阻。设内外的半径分别为a、b,长度为长度为l,其间媒质的电导率为,其间媒质的电导率为、介电常数为、介电常数为。解解:直接用恒定电场的计算方法直接用恒定电场的计算方法电导电导绝缘电阻绝缘电阻则则设由内导体流向外导体的电流为设由内导体流向外导体的电流为I。62电磁场与电磁波电磁场与电磁波本节内容本节内容 3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位 3.3.3 电感电感 3.3.4 恒定磁场的能量恒定磁场的能量 3.3.5 磁场力磁场力 3.3 恒定磁场分析恒定磁场分析63电磁场与电磁波电磁场与

24、电磁波 设回路设回路 C 中的电流为中的电流为I,所产生的磁场与回路,所产生的磁场与回路 C 交链的磁链交链的磁链为为,则磁链,则磁链 与回路与回路 C 中的电流中的电流 I 有正比关系,其比值有正比关系,其比值称为回路称为回路 C 的自感系数,简称自感。的自感系数,简称自感。外自感外自感2.自感自感 内自感;内自感;粗导体回路的自感:粗导体回路的自感:L=Li+Lo 自感只与回路的几何形状、尺寸以及周围的磁介质有关,与自感只与回路的几何形状、尺寸以及周围的磁介质有关,与电流无关。电流无关。自感的特点自感的特点:64电磁场与电磁波电磁场与电磁波 解解:先求内导体的内自感。设同轴:先求内导体的内

25、自感。设同轴线中的电流为线中的电流为I,由安培环路定理,由安培环路定理穿过沿轴线单位长度的矩形面积元穿过沿轴线单位长度的矩形面积元dS=d的磁通为的磁通为 例例3.3.3 求求同同轴轴线线单单位位长长度度的的自自感感。设设内内导导体体半半径径为为a,外外导导体体厚度可忽略不计,其半径为厚度可忽略不计,其半径为b,空气填充。,空气填充。得得与与di 交链的电流为交链的电流为则与则与di 相应的磁链为相应的磁链为65电磁场与电磁波电磁场与电磁波因此内导体中总的内磁链为因此内导体中总的内磁链为故单位长度的内自感为故单位长度的内自感为再求内、外导体间的外自感。再求内、外导体间的外自感。则则故单位长度的

26、外自感为故单位长度的外自感为单位长度的总自感为单位长度的总自感为66电磁场与电磁波电磁场与电磁波 例例3.3.4 计算平行双线传输线单位长度的自感。设导线的半计算平行双线传输线单位长度的自感。设导线的半径为径为a,两导线的间距为,两导线的间距为D,且,且 D a。导线及周围媒质的磁导。导线及周围媒质的磁导率为率为0。穿过两导线之间沿轴线方向为单位长度的面积的外磁链为穿过两导线之间沿轴线方向为单位长度的面积的外磁链为 解解 设两导线流过的电流为设两导线流过的电流为I。由。由于于D a,故可近似地认为导线中的,故可近似地认为导线中的电流是均匀分布的。应用安培环路定电流是均匀分布的。应用安培环路定理

27、和叠加原理,可得到两导线之间的理和叠加原理,可得到两导线之间的平面上任一点平面上任一点P 的磁感应强度为的磁感应强度为PII67电磁场与电磁波电磁场与电磁波于是得到平行双线传输线单位长度的外自感于是得到平行双线传输线单位长度的外自感两根导线单位长度的内自感为两根导线单位长度的内自感为故得到平行双线传输线单位长度的自感为故得到平行双线传输线单位长度的自感为68电磁场与电磁波电磁场与电磁波 对两个彼此邻近的闭合回路对两个彼此邻近的闭合回路C1 和回路和回路 C2,当回路,当回路 C1 中通过电中通过电流流 I1 时,不仅与回路时,不仅与回路 C1 交链的磁交链的磁链与链与I1 成正比,而且与回路成

28、正比,而且与回路 C2 交交链的磁链链的磁链 21 也与也与 I1 成正比,其比成正比,其比例系数例系数称为回路称为回路 C1 对回路对回路 C2 的互感系数,简称互感。的互感系数,简称互感。3.互感互感同理,回路同理,回路 C2 对回路对回路 C1 的互感为的互感为C1C2I1I2Ro69电磁场与电磁波电磁场与电磁波 互感只与回路的几何形状、尺寸、两回路的相对位置以及周围互感只与回路的几何形状、尺寸、两回路的相对位置以及周围 磁介质有关,而与电流无关。磁介质有关,而与电流无关。满足互易关系,即满足互易关系,即M12=M21 当与回路交链的互感磁通与自感磁通具有相同的符号时,互当与回路交链的互

29、感磁通与自感磁通具有相同的符号时,互 感系数感系数 M 为正值;反之,则互感系数为正值;反之,则互感系数 M 为负值为负值。互感的特点:互感的特点:70电磁场与电磁波电磁场与电磁波由图中可知由图中可知长长直直导线导线与三角形回路与三角形回路穿过三角形回路面积的磁通为穿过三角形回路面积的磁通为 解解 设长直导线中的电流为设长直导线中的电流为I,根据根据安培环路定理,得到安培环路定理,得到 例例3.3.5 如图所示,长直导线与三角如图所示,长直导线与三角形导体回路共面,求它们之间的互感。形导体回路共面,求它们之间的互感。71电磁场与电磁波电磁场与电磁波因此因此故长直导线与三角形导体回路的互感为故长

30、直导线与三角形导体回路的互感为72电磁场与电磁波电磁场与电磁波2.磁场能量密度磁场能量密度 从场的观点来看,磁场能量分布于磁场所在的整个空间。从场的观点来看,磁场能量分布于磁场所在的整个空间。磁场能量密度:磁场能量密度:磁场的总能量:磁场的总能量:积分区域为磁场积分区域为磁场所在的整个空间所在的整个空间对于线性、各向同性介质,则有对于线性、各向同性介质,则有73电磁场与电磁波电磁场与电磁波 例例3.3.7 同轴电缆的同轴电缆的内导体半径为内导体半径为a,外导体的内、外半径外导体的内、外半径分别为分别为 b 和和 c,如图所示。导体中通有电流,如图所示。导体中通有电流 I,试求同轴电缆中,试求同

31、轴电缆中单位长度储存的磁场能量与自感。单位长度储存的磁场能量与自感。解解:由安培环路定理,得:由安培环路定理,得74电磁场与电磁波电磁场与电磁波三个区域单位长度内的磁场能量分别为三个区域单位长度内的磁场能量分别为75电磁场与电磁波电磁场与电磁波单位长度内总的磁场能量为单位长度内总的磁场能量为单位长度的总自感单位长度的总自感内导体的内自感内导体的内自感内外导体间的外自感内外导体间的外自感外导体的内自感外导体的内自感76电磁场与电磁波电磁场与电磁波3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 本节内容本节内容 3.4.1 边值问题的类型边值问题的类型 3.4.2 惟一性

32、定理惟一性定理边值问题边值问题:在给定的边界条件下,求解位函数的泊松方程或:在给定的边界条件下,求解位函数的泊松方程或 拉普拉斯方程。拉普拉斯方程。77电磁场与电磁波电磁场与电磁波3.4.1 3.4.1 边值问题的类型边值问题的类型边值问题的类型边值问题的类型已知场域边界面已知场域边界面S 上的位函数值,即上的位函数值,即第一类边值问题(或狄里赫利问题)第一类边值问题(或狄里赫利问题)已知场域边界面已知场域边界面S 上的位函数的法向导数值,即上的位函数的法向导数值,即 已知场域一部分边界面已知场域一部分边界面S1 上的上的位函数值,而另一部分边界位函数值,而另一部分边界面面S2 上则已知上则已

33、知位函数的法向导数值,即位函数的法向导数值,即第三类边值问题(或混合边值问题)第三类边值问题(或混合边值问题)第二类边值问题(或纽曼问题)第二类边值问题(或纽曼问题)78电磁场与电磁波电磁场与电磁波 自然边界条件自然边界条件(无界空间)(无界空间)周期边界条件周期边界条件 衔接条件衔接条件不同媒质分界面上的边界条件,如不同媒质分界面上的边界条件,如79电磁场与电磁波电磁场与电磁波例:例:(第一类边值问题)(第一类边值问题)(第三类边值问题)(第三类边值问题)例:例:80电磁场与电磁波电磁场与电磁波 像电荷的个数、位置及其电荷量大小像电荷的个数、位置及其电荷量大小“三要素三要素”。4.镜像法应用

34、的关键点镜像法应用的关键点5.确定镜像电荷的两条原则确定镜像电荷的两条原则等效求解的等效求解的“有效场域有效场域”。镜像电荷的确定镜像电荷的确定像电荷必须位于所求解的场域以外的空间中。像电荷必须位于所求解的场域以外的空间中。像电荷的个数、位置及电荷量的大小以满足所求解的场像电荷的个数、位置及电荷量的大小以满足所求解的场 区域的边界条件来确定。区域的边界条件来确定。81电磁场与电磁波电磁场与电磁波1.点电荷对无限大接地导体平面的镜像点电荷对无限大接地导体平面的镜像满足原问题的边界条件,所得的结果是正确的。满足原问题的边界条件,所得的结果是正确的。3.5.1 接地导体平面的镜像接地导体平面的镜像镜

35、像电荷镜像电荷电位函数电位函数因因 z=0 时,时,有效区域有效区域q qq q82电磁场与电磁波电磁场与电磁波3.点电荷对相交半无限大接地导体平面的镜像点电荷对相交半无限大接地导体平面的镜像 如如图图所所示示,两两个个相相互互垂垂直直相相连连的的半半无无限限大大接接地地导导体体平平板板,点点电荷电荷q 位于位于(d1,d2)处。处。显显然然,q1 对对平平面面 2 以以及及 q2 对对平平面面 1 均不能满足边界条件。均不能满足边界条件。对于平面对于平面1,有镜像电荷,有镜像电荷q1=q,位于,位于(d1,d2)对于平面对于平面2,有镜像电荷,有镜像电荷q2=q,位于,位于(d1,d2)只有

36、在只有在(d1,d2)处处再设置一再设置一镜像电荷镜像电荷q3=q,所有边界条件才能,所有边界条件才能得到满足。得到满足。电位函数电位函数 d11qd22RR1R2R3q1d1d2d2q2d1q3d2d183电磁场与电磁波电磁场与电磁波 例例3.5.1 一一个个点点电电荷荷q与与无无限限大大导导体体平平面面距距离离为为d,如如果果把把它它移移至无穷远处,需要做多少功?至无穷远处,需要做多少功?解解:移移动动电电荷荷q时时,外外力力需需要要克克服服电电场场力力做做功功,而而电电荷荷q受受的的电电场场力力来来源源于于导导体体板板上上的的感感应应电电荷荷。可可以以先先求求电电荷荷q 移移至至无穷远时

37、电场力所做的功。无穷远时电场力所做的功。qqx =0d-d 由由镜镜像像法法,感感应应电电荷荷可可以以用用像像电电荷荷 替替代代。当当电电荷荷q 移移至至x时,像电荷时,像电荷 应位于应位于x,则,则像电荷产生的电场强度像电荷产生的电场强度84电磁场与电磁波电磁场与电磁波3.5.2 导体球面的镜像导体球面的镜像1.点电荷对接地导体球面的镜像点电荷对接地导体球面的镜像 球面上的感应电荷可用镜像电荷球面上的感应电荷可用镜像电荷q来等效。来等效。q 应位于导体球内(显然应位于导体球内(显然不影响原方程),且在点电荷不影响原方程),且在点电荷q与球与球心的连线上,距球心为心的连线上,距球心为d。则有。

38、则有 如图所示,点电荷如图所示,点电荷q 位于半径位于半径为为a 的接地导体球外,距球心为的接地导体球外,距球心为d。方法方法:利用导体球面上电位为零确定:利用导体球面上电位为零确定 和和 q。问题问题:PqarRdqPaqrRRdd85电磁场与电磁波电磁场与电磁波 令令ra,由球面上电位为零,由球面上电位为零,即即 0,得,得此式应在整个球面上都成立。此式应在整个球面上都成立。条件条件:若:若像电荷的位置像电荷的位置像电荷的电量像电荷的电量常数常数qPqaRRddO由于由于86电磁场与电磁波电磁场与电磁波 将偏微分方程中含有将偏微分方程中含有n个自变量的待求函数表示成个自变量的待求函数表示成

39、n个各自只个各自只含一个变量的函数的乘积,把偏微分方程分解成含一个变量的函数的乘积,把偏微分方程分解成n个常微分方程,个常微分方程,求出各常微分方程的通解后,把它们线性叠加起来,得到级数形求出各常微分方程的通解后,把它们线性叠加起来,得到级数形式解,并利用给定的边界条件确定待定常数。式解,并利用给定的边界条件确定待定常数。分离变量法是求解边值问题的一种经典方法分离变量法是求解边值问题的一种经典方法分离变量法的理论依据是惟一性定理分离变量法的理论依据是惟一性定理分离变量法解题的基本思路:分离变量法解题的基本思路:3.6.1 分离变量法解题的基本原理分离变量法解题的基本原理87电磁场与电磁波电磁场

40、与电磁波 例例3.6.1 无限长的矩形金属导体槽上有一盖板,盖板与金属无限长的矩形金属导体槽上有一盖板,盖板与金属槽绝缘,盖板电位为槽绝缘,盖板电位为U0,金属槽接地,横截面如图所示,试计,金属槽接地,横截面如图所示,试计算此导体槽内的电位分布。算此导体槽内的电位分布。解:解:位函数满足的方程和边界条位函数满足的方程和边界条件为件为因因 (0,y)0、(a,y)0,故,故位函数的通解应取为位函数的通解应取为88电磁场与电磁波电磁场与电磁波 第第4 4章章 时变电磁场时变电磁场 4.1 波动方程波动方程 4.2 电磁场的位函数电磁场的位函数 4.3 电磁能量守恒定律电磁能量守恒定律 4.4 惟一

41、性定理惟一性定理 4.5 时谐电磁场时谐电磁场89电磁场与电磁波电磁场与电磁波4.1 波动方程波动方程 在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有质,则有 无源区的波动方程无源区的波动方程 波动方程波动方程 二二阶矢量微分方程,阶矢量微分方程,揭示电磁场的波动性。揭示电磁场的波动性。麦克斯韦方程组麦克斯韦方程组 一阶矢量微分方程组,描述电场与磁场一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。间的相互作用关系。麦克斯韦方程组麦克斯韦方程组 波动方程波动方程 问题的提出问题的提出电磁波动方程电磁波动方程90电磁场与电磁波

42、电磁场与电磁波引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数的意义引入位函数的意义 位函数的定义位函数的定义91电磁场与电磁波电磁场与电磁波除了利用洛仑兹条件外,另一种常用的是库仑条件,即除了利用洛仑兹条件外,另一种常用的是库仑条件,即 在电磁理论中,通常采用洛仑兹条件,即在电磁理论中,通常采用洛仑兹条件,即 位函数的规范条件位函数的规范条件 造成位函数的不确定性的原因就是没有规定造成位函数的不确定性的原因就是没有规定 的散度。利用位的散度。利用位函数的不确定性,可通过规定函数的不确定性,可通过规定 的散度使位函数满足的方

43、程得以简的散度使位函数满足的方程得以简化。化。92电磁场与电磁波电磁场与电磁波 说明说明 若应用库仑条件,位函数满足什么样的方程若应用库仑条件,位函数满足什么样的方程?具有什么特点具有什么特点?问题问题 应用洛仑兹条件的特点:应用洛仑兹条件的特点:位函数满足的方程在形式上是对称位函数满足的方程在形式上是对称 的的,且且比比较较简简单单,易易求求解解;解解的的物物理理意意义义非非常常清清楚楚,明明确确地地 反映出电磁场具有有限的传递速度;反映出电磁场具有有限的传递速度;矢量位只决定于矢量位只决定于J,标,标 量位只决定于量位只决定于,这对求解方程特别有利。只需解出这对求解方程特别有利。只需解出A

44、,无需,无需 解出解出 就可得到待求的电场和磁场。就可得到待求的电场和磁场。电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位用不同的规范条件,矢量位A和标量位和标量位 的解也不相同,但最终的解也不相同,但最终 得到的电磁场矢量是相同的。得到的电磁场矢量是相同的。93电磁场与电磁波电磁场与电磁波坡印廷定理的积分形式坡印廷定理的积分形式 物理意义:物理意义:单位时间内,通过曲面单位时间内,通过曲面S 进入体积进入体积V的电磁能量等于的电磁能量等于 体积体积V 中所增加的电磁场能量与损耗的能量之和。中所增加的电磁场

45、能量与损耗的能量之和。94电磁场与电磁波电磁场与电磁波 定义:定义:(W/m2)物理意义物理意义:的方向的方向 电磁能量传输的方向电磁能量传输的方向 的大小的大小 通过垂直于能量传输方通过垂直于能量传输方 向的单位面积的电磁功率向的单位面积的电磁功率 描述时变电磁场中电磁能量传输的一个重要物理量。描述时变电磁场中电磁能量传输的一个重要物理量。坡印廷矢量(电磁能流密度矢量)坡印廷矢量(电磁能流密度矢量)95电磁场与电磁波电磁场与电磁波 时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问题的分析得以简化。题的分析得以简化。设设 是是一一个个以以

46、角角频频率率 随随时时间间t t 作作正正弦弦变变化化的的场场量量,它它可可以以是是电电场场和和磁磁场场的的任任意意一一个个分分量量,也也可可以以是是电电荷荷或或电电流流等等变变量量,它与时间的关系可以表示成它与时间的关系可以表示成其中其中时间因子时间因子空间相位因子空间相位因子 利用三角公式利用三角公式式中的式中的A0为振幅、为振幅、为与坐标有关的相位因子。为与坐标有关的相位因子。实数表示法或实数表示法或瞬时表示法瞬时表示法复数表示法复数表示法复振幅复振幅 时谐电磁场的时谐电磁场的复数表示复数表示96电磁场与电磁波电磁场与电磁波 复数式只是数学表示方式,不代表真实的场。复数式只是数学表示方式

47、,不代表真实的场。照此法,矢量场的各分量照此法,矢量场的各分量Ei(i 表示表示x、y 或或 z)可表示成)可表示成 各分量合成以后,电场强度为各分量合成以后,电场强度为 有关复数表示的进一步说明有关复数表示的进一步说明复矢量复矢量 真实场是复数式的实部,即瞬时表达式。真实场是复数式的实部,即瞬时表达式。由于时间因子是默认的,有时它不用写出来,只用与坐标有由于时间因子是默认的,有时它不用写出来,只用与坐标有 关的部分就可表示复矢量。关的部分就可表示复矢量。97电磁场与电磁波电磁场与电磁波从从形形式式上上讲讲,只只要要把把微微分分算算子子 用用 代代替替,就就可可以以把把时时谐谐电电磁磁场场的的

48、场场量量之之间间的的关关系系,转转换换为为复复矢矢量量之之间间关关系系。因因此此得得到到复复矢矢量的麦克斯韦方程:量的麦克斯韦方程:略去略去“.”和下标和下标m4.5.2 复矢量的麦克斯韦方程复矢量的麦克斯韦方程98电磁场与电磁波电磁场与电磁波 例题例题:已知正弦电磁场的电场瞬时值为:已知正弦电磁场的电场瞬时值为式中式中 解解:(1)因为)因为故电场的复矢量故电场的复矢量试求:(试求:(1)电场的复矢量)电场的复矢量;(2)磁场的复矢量和瞬时值。)磁场的复矢量和瞬时值。99电磁场与电磁波电磁场与电磁波(2)由复数形式的麦克斯韦方程,得到磁场的复矢量)由复数形式的麦克斯韦方程,得到磁场的复矢量磁

49、场强度瞬时值磁场强度瞬时值100电磁场与电磁波电磁场与电磁波 损耗角正切损耗角正切 导电媒质导电性能的相对性导电媒质导电性能的相对性电介质电介质导电媒质导电媒质磁介质磁介质 弱导电媒质和良绝缘体弱导电媒质和良绝缘体 一般导电媒质一般导电媒质 良导体良导体 工工程程上上通通常常用用损损耗耗角角正正切切来来表表示示媒媒质质的的损损耗耗特特性性,其其定定义义为为复介电常数或复磁导率的虚部与实部之比,即有复介电常数或复磁导率的虚部与实部之比,即有 导导电电媒媒质质的的导导电电性性能能具具有有相相对对性性,在在不不同同频频率率情情况况下下,导导电电媒质具有不同的导电性能。媒质具有不同的导电性能。101电

50、磁场与电磁波电磁场与电磁波导电媒质导电媒质理想介质理想介质4.5.4 亥姆霍兹方程亥姆霍兹方程 对对于于时时谐谐电电磁磁场场,将将 、,即即可可得得到到复复矢矢量量的的波波动动方方程,称为亥姆霍兹方程。程,称为亥姆霍兹方程。瞬时矢量瞬时矢量复矢量复矢量102电磁场与电磁波电磁场与电磁波 解解:(1)由得)由得(2)电场和磁场的瞬时值为)电场和磁场的瞬时值为 例例4.5.4已知无源的自由空间中,电磁场的电场强度复矢量已知无源的自由空间中,电磁场的电场强度复矢量为为 ,其中,其中k 和和 E0 为常数。求:为常数。求:(1)磁场强度复矢)磁场强度复矢量量 ;(;(2)瞬时坡印廷矢量)瞬时坡印廷矢量

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁