《第五届数学竞赛决赛试题及答案.doc》由会员分享,可在线阅读,更多相关《第五届数学竞赛决赛试题及答案.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五届数学竞赛决赛试题及答案 一、计算下面各题,并写出简要的运算过程(共15分,每小题5分) 二、填空题(共40分,每小题5分) 1.在下面的“”中填上合适的运算符号,使等式成立: (1992)(1992)(1992)=1992 2.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。那么,这个等腰梯形的周长是_厘米。 3.一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有_人已经就座。 4.用某自然数a去除1992,得到商是46,余数是r。a=_,r=_
2、。 5.“重阳节”那天,延龄茶社来了25位老人品茶。他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。其中年龄最大的老人今年_岁。 6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少_个学生中一定有两人所借的图书属于同一种。 7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。那么得分最少的选手至少得_分,至多得_分。(每位选手的得分都是整数) 8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。那么,只有当锯得的38毫米的铜管为_段、90毫米的铜管为
3、_段时,所损耗的铜管才能最少。 三、解答下面的应用题(要写出列式解答过程。列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分) 1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。现由甲工程队先修3天。余下的路段由甲、乙两队合修,正好花6天时间修完。问:甲、乙两个工程队每天各修路多少米? 2.一个人从县城骑车去乡办厂。他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。 3.一个长方体的宽和高相
4、等,并且都等于长的一半(如图12)。将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米。求这个大长方体的体积。 4.某装订车间的三个工人要将一批书打包后送往邮局(要求每个包内所 多35本。第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包。这批书共有多少本? 四、问答题(共35分) 1.有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。问:保证一定获胜的对策是什么?(5分) 2.有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正
5、方形的边长应为几厘米?(6分) 3.个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a)、(b)两种形状的铁皮毛坯。 现有甲、乙两块铁皮下脚料(如图14、图15),图13、图14、图15中的小方格都是边长相等的正方形。金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a)、(b)两种铁皮同样多),并且一点材料也不浪费。问:(1)金师傅应当从甲、乙两块铁皮下脚料中选哪一块?(3分) (2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)(5分) 4.只修改21475的某一位数字,就可以使修改后的数能被225整除。怎样修改?(
6、6分) 5.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(5分) (2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?(5分) 详解与说明 一、计算题 说明:要想得到简便的算法,必须首先对题中每个数和运算符号作全面、 ,马上就应该知道它可以化为3.6;而3.6与36只差一个小数点,于是,又容易想到把“654.336”变形为“65433.6”,完成了这步,就为正 ”采用了同样的手段,这种技巧本报多次作过介绍。 说明:解这道题可以从不同的角度来观察。解法一是先观察、比较分子部分每个加数(连乘积)的因数,
7、发现了前后之间的倍数关系,从而把“1324”作为公因数提到前面,分母部分也作了类似的变形。而解法二,是着眼于整个繁分数,由分子看到分母,发现分子部分的左、中、右三个乘 分子部分括号内三个乘积的和约去了。本题是根据数学之友(7)第2页例5改编的。 3.解法一: 解法二: 说明:解法一是求等比数列前n项和的一般方法,这种方法本报217期第一版“好伙伴信箱”栏中曾作过介绍。由于本题中后一个加数总是前一个加数的一半,因而,只要添上一个最小的加数,就能凑成“2倍”,也就是它前面的一个加数,这就不难想到解法二。 二、填空题 1.解: (199+2)(1+9-9+2)(19-9-2) =8338 =1992
8、 或(1992)(1992)(19-9+2) =83212 =1992 (本题答案不唯一,只要所填的符号能使等式成立,都是正确的) 说明:在四个数字之间填上三个运算符号,使它们的计算结果为某个已知数,这是选手们熟悉的“算式谜”题。而这道题却不容易一下子判断括号内的计算结果应该是多少,这就需要把1992分解为三个数连乘积的形式,1992=833222,因为83、3、2、2、2组成三个乘积为1992的数有多种组合形式,所以填法就不唯一了。 2.解:55+15+252=120(厘米) 说明:要算周长,需要知道上底、下底、两条腰各是多长。容易判断:下底最长,应为55厘米。关键是判断腰长是多少,如果腰长
9、是15厘米,152+25=55,说明上底与两腰长度之和恰好等于下底长,四条边不能围成梯形,所以,腰长只能是25厘米。读者从本报190期第三版任意三根小棒都能围成三角形吗一文中应当受到启发。 3.解:最少有 说明:根据题意,可推知这排长椅上已经就座的任意相邻的两人之间都有两个空位。但仅从这个结果中还不能肯定长椅上共有多少个座位,因为已经就座的人最左边一个(最右边一个)既可以坐在左边(右边)起第一个座位上,也可以坐在左边(右边)起第二个座位上(如图16所排出的两种情况,“”表示已经就座的人,“”表示空位)”。 不过,题目中问“至少”有多少人就座,那就应选第二种情况,每三人()一组,每组中有一人已经
10、就座。 (1) (2) 图16 4.解法一:由199246=4314 立即得知:a=43,r=14 解法二:根据带余除法的基本关系式,有 1992=46a+r(0ra) 由r=1992-46a0,推知 由r=1992-46aa,推知 因为a是自然数,所以a=43 r=1992-4643=14 说明:本题并不难,因此应尽可能运用简单的方法,迅速地算出答案。解法一是根据1992a的商是46,因而直接用199246得到了a和r。解法二用的是“估值法”。 5.解法一:先算出这25位老人今年的岁数之和为 2000-252=1950 年龄最大的老人的岁数为 1950+(1+2+3+4+24)25 =225
11、025 =90(岁) 解法二:两年之后,这25位老人的平均年龄(年龄处于最中间的老人的年龄)为200025=80(岁) 两年后,年龄最大的老人的岁数为80+12=92(岁) 年龄最大的老人今年的岁数为92-2=90(岁) 说明:解法一采用了“补齐”的手段(详见本报241期第一版“削平”与“补齐”一文)。当然,也可以用“削平”法先求年龄最小的老人的岁数,再加上24。解法二着眼于25人的平均年龄,先算年龄处于最中间的老人的岁数,算起来更简便些。 6.解:根据“抽屉原理”,可知至少7个学生中有两人所借图书的种类完全相同。 说明:本题是抽屉原理的应用。应用这个原理的关键是制造抽屉。从历史、文艺、科普三
12、种图书若干本中任意借两本,共有(史,史)、(文,文)、(科,科)、(史,文)、(史,科)、(文,科)这六种情况,可把它们看作六只“抽屉”,每个学生所借的两本书一定是这六种情况之一。换句话说,如果把借书的学生看作“苹果”,那么至少7个苹果放入六个抽屉,才能有两个苹果放在同一个抽屉内。本题是由本报234期“奥林匹克学校”拦的例2改换而成的。 7.解:得分最低者最少得 404-(90+89+88+87)=50(分) 得分最低者最多得 404-90-(1+2+3)4=77(分) 说明:解这道题要考虑两种极端情形: (1)要使得分最低的选手的得分尽可能地少,在五名选手总分一定的条件下,应该使前四名领先于
13、第五名的分数尽可能多才行。第一名得分是已知的(90分),这就要求第二、三、四名的得分尽可能靠近90分,而且互不相等,只有第二、三、四名依次得89分、88分、87分时,第五名得分最少。 (2)要使得分最低的选手得分最多,在总分和第一名得分一定的条件下,应当使第二、三、四、五名的得分尽可能接近。考虑到他们的得分又要互不相等,只有当第二、三、四、五名的得分为四个连续自然数时才能做到,用“削平”的方法可以算出第五名最多得多少分。 本题是根据数学之友(7)第46页第13题改编的。 8.解:设38毫米、90毫米的铜管分别锯X段、Y段,那么,根据题意,有 38X+90Y+(X+Y-1)=1000 39X+9
14、1Y=1001 要使损耗最少,就应尽可能多锯90毫米长的铜管,也就是说上面式中的X应尽可能小,Y尽可能大。由于X、Y都必须是自然数,因而不难推知:X=7,Y=8。即38毫米的铜管锯7段,90毫米的铜管锯8段时,损耗最少。 说明:选手们读题之后,可以马上想到:要使损耗最少,应尽可能多锯90毫米长的铜管,但必须符合“两种铜管都有”、“两种铜管长度之和加上损耗部分长度应等于1米”两个条件,这样算起来就不那么简单了。这种题目,借助等量关系式来进行推理比较方便,不过,列方程时可别忘掉那损耗的1毫米,而且损耗了几个“1毫米”也不能算错,应该是“总段数-1”。 列出方程式之后,还有两点应当讲究:(1)变形要
15、合理;(2)要选用简便算法。如上面解法中,把1001写成71113,39写成313,91写成713,使分子部分和分母部分可以约分,对于迅速推知最后结果是大有帮助的。 本题是数学之友(7)第51页练习六中的原题。 三、应用题 1.解法一:假设乙工程队每天与甲工程队修的路同样多,那么两队一共修的路就要比4200米少600米,这3600米就相当于甲工程队用15天(15=3+62)修完的,列式为 (4200-600)(3+62) =360015=240(米) 240+100=340(米) 解法二:设甲工程队每天修路X米,那么乙工程队每天修路“X+100”米,根据题意,列方程 3X+6(X+X+100)
16、=4200 解得X=240 从而X+100=340(米) 答:甲工程队每天修路240米,乙工程队每天修路340米。 说明:“假设”是我们解应用题时经常采用的算术方法,它体现了机智、敏捷,能迅速得到答案。本题根据本报第234期第二版“思考题解答”一栏中的例题改编而成。 2.解:从题目可知,前30分钟行完总路程的一半,后20分钟没有把另一半行完,比总路程的一半少2千米。换句话说,后20分钟比前30分钟少行了2000米。为什么会少行呢?原因有两方面:(1)后20分钟比前30分钟少行10分钟;(2)后20分钟比前30分钟每分钟多行50米。这样,容易推知前30分钟里每10分钟所行的路程是2050+200
17、0=3000(米)。前30分钟每分钟行300010=300(米)总路程为 300302=18000(米) 答:县城到乡办厂之间的总路程为18千米。 说明:解本题的关键是:(1)通过比较,知道这个人前30分钟比后20分钟多行多少路程;(2)找出前30分钟比后20分钟多行2000米的原因是什么。详见本报209期抓住矛盾找原因一文。 3.解法一:设大长方体左(右)面面积为X平方分米,则大长方体表面积为10X。切成12个小长方体后,新增加的表面积为 (3X+22X)2=14X 12个小长方体表面积之和为 10X+14X=600 X=25 V=2510=250(立方分米) 解法二:把大长方体的表面积看作
18、“1”,则切成12个小长方体后, V=2552=250(立方分米) 答:这个大长方体的体积为250立方分米。 说明:这道题比较简单,只要明白把一个几何体切成两部分后,“新增加的表面积等于切面面积的2倍”这个关系,不过,在计算新增加表面积时,稍不留心就会弄错。本题根据本报第226期第一版“教你思考”栏中的例题改编的。 又因为10包+25本+35本11包 所以1包60本 (14+11)60=1500(本) 解法二:(列方程解) 则有7X=14Y+35(1) 5X=11Y-35(2) (1)-(2),得ZX3Y70(3) (1)+(2),得12X=25Y(4) (3)6,得12X=18Y+420(5
19、) 比较(4)、(5)两式,有 25Y=18Y+420 解得Y=60 12X=2560=1500(本) 答:这批书共有1500本。 说明:这道题目里的数量关系其实很容易看出,解法一几乎是心算出结果的。所以,不能把问题想得很复杂。解法二比较容易想到,但设“未知数”也很有讲究,如果设这批书有X本,变形就比较麻烦了。 四、问答题 1.答:保证一定获胜的对策是:(1)先取1粒钮扣,这时还剩1991粒钮扣。(2)下面轮到对方取,如果对方取n粒(1n4),自己就取“5-n”粒,经过398个轮回后,又取出3985=1990(粒)钮扣,还剩1粒钮扣,这1粒必定留给对方取。 说明:本题只是把本报233期“奥林匹
20、克学校”栏对策问题的“例1”改掉一个字“胜”改为“输”。一字之差,对策就要改变。我们知道,解对策问题有一个基本思路:把失败(输)的可能留给对手。本题中,谁取到最后一粒钮扣谁就算输,因而,要想获胜,就必须抢到第1991粒。想到这一点,就容易找到保证获胜的对策了。 2.答:剪去的小正方形边长应为4厘米。 说明:要回答这道题,可以先到一个表来比较一下。通过比较,容易知道剪去的小正方形边长是几厘米时,做成的纸盒容积最大。 从上面表中一下子可以看出结果。 还可以设被剪去的小正方形边长(纸盒的高)为h,那么,纸盒底面边长为24-2h。它的容积为 因为24-2h+24-2h+4h=48(定数),根据数学之友
21、(7)第23页所介绍的结论,当24-2h=4h时,(24-2h)(24-2h)4h乘积最大。也就是说,当h=4时,V最大。 3.答:(1)应选甲铁皮料。 (2)剪法如图17。 说明:题中要求选一块铁皮料适合做“成套”的铁皮制品,这就要求所选的铁皮料中包含的(a)(b)两种毛坯同样多;又因为不能浪费材料,所以,只要算一算(数一数甲、乙两块材料中各有多少小正方形),看甲(或乙)材料中小正方形的总数能不能被(10+7=17)整除。 在回答第(2)个问题时,可以把(a)(b)两块毛坯拼成图18,再根据上面所算出的结果,从中心处向四个方向剪开,就得到4个图18的形状。仔细观察图17,容易发现图中的对称美
22、,这种美也能启发你找到剪裁铁皮的方法。 4.答:可以把“1”改为“0”,也可以把“4”改为“3”,还可以把“1”改为“9”,把“2”改为“1”。 说明:本题有四种符合要求的答案,就看你考虑问题是不是全面了。因为225=259,所以要修改后的数能被225整除,就是既能被25整除,又能被9整除。被25整除不成问题,末两位数75不必修改,只要看前面三个数字。有2+1+4+7+5=19=18+1=27-8,不难排出上面四种答案。 5.答:(1)把9块中的三块各分为两部分: 说明:这个分糖的问题很有趣。先得算一算,9块糖平分给4个孩子, 因为题中有一句话限制了分的方法,这就是“每块糖至多只能切成两部分”。 注意这条“限制”。